Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That sphalerite is a cave mineral - zns [11].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for microbial activities (Keyword) returned 8 results for the whole karstbase:
MICROBIAL DECOMPOSITION OF ELM AND OAK LEAVES IN A KARST AQUIFER, 1993, Eichem Ac, Dodds Wk, Tate Cm, Edler C,
Dry Chinquapin oak (Quercus macrocarpa) and American elm (Ulmus americana) leaves were placed in four microcosms fed by groundwater springs to monitor changes in dry mass, ash-free dry mass, and microbial activity over a 35-day period. Oxygen microelectrodes were used to measure microbial activity and to estimate millimeter-scale heterogeneity in that activity. Oak leaves lost mass more slowly than elm leaves. Generally, there was a decrease in total dry weight over the first 14 days, after which total dry weight began to increase. However, there were consistent decreases in ash-free dry mass over the entire incubation period, suggesting that the material remaining after initial leaf decomposition trapped inorganic particles. Microbial activity was higher on elm leaves than on oak leaves, with peak activity occurring at 6 and 27 days, respectively. The level of oxygen saturation on the bottom surface of an elm leaf ranged between 0 and 75% within a 30-mm2 area. This spatial heterogeneity in O2 saturation disappeared when the water velocity increased from 0 to 6 cm s-1. Our results suggest that as leaves enter the groundwater, they decompose and provide substrate for microorganisms. The rate of decomposition depends on leaf type, small-scale variations in microbial activity, water velocity, and the length of submersion time. During the initial stages of decomposition, anoxic microzones are formed that could potentially be important to the biogeochemistry of the otherwise oxic aquifer

Calcite Moonmilk: Crystal Morphology and Environment of Formation in Caves in the Italian Alps, 2000, Borsato A, Frisia S, Jones B, Van Der Borg K,
Calcite moonmilk, which is a cave deposit formed of calcite crystals and water, is found in many caves in the Italian Alps. These modern and ancient deposits are formed of fiber calcite crystals, 50-500 nm wide and 1 to > 10 {micro}m long, and polycrystalline chains that have few crystal defects. Radiocarbon dating indicates that most moonmilk deposits in these caves are fossil and that for most precipitation ceased [~] 6400 cal years BP, at the end of the mid-Holocene Hypsithermal. In the caves of the Italian Alps, the optimal conditions for formation of calcite moonmilk are: (1) a temperature range of 3.5-5.5{degrees}C, (2) low discharge volumes of seepage waters that are slightly supersaturated (SICAL = 0.0 to [~] 0.2), and (3) relative humidity that is at or close to 100%. Microbial activity apparently did not play an active role in the formation of the calcite moonmilk. Conditions for moonmilk formation are typically found in caves that are located beneath land surfaces, which are soil covered and support a conifer forest. Precipitation of the fiber calcite crystals apparently involved very slow flow of slightly supersaturated fluids. The fact that moonmilk appears to form under a narrow range of environmental conditions means that this cave deposit has potential as a paleoclimatic indicator in high alpine karst areas

Investigations of microbial origin of karst corrosion of soils depending on different temperatures, 2001, Zambo L. , Horvath G. , Telbisz T. ,
The acids accumulating in soils and controlling the solution of carbonates including the predominant CO2, mostly derive from three processes: i) root respiration of higher plants; ii) decomposition of soil organic matter by microorganisms (microbiota) and iii) other decomposition processes not associated with microbial activities. The solution effect under rendzina soils is primarily used for the dissolution of the enclosed limestone fragments and thus here the solution of bedrock is of limited scale. Below karst soils of high clay content the corrosion of bedrock is more intensive than under rendzinas. On the whole, the amount of carbonates dissolved and transported Into the depths of the karst is smaller than below rendzinas. In each soil type studied the solution caused by microbial activities manifold exceeds the rate of solution resulting from temperature factor but there is a manifest dropping trend from rendzina to clays

The Barremian-Aptian Evolution of The Eastern Arabian Carbonate Platform Margin (Northern Oman), 2003, Hillgartner Heiko, Van Buchem Frans S. P. , Gaumet Fabrice, Razin Philippe, Pittet Bernard, Grotsch Jurgen, Droste Henk,
Carbonate platform margins are sensitive recorders of changes in sea level and climate and can reveal the relative importance of global and regional controls on platform evolution. This paper focuses on the Barremian to Aptian interval (mid Cretaceous), which is known for climatic and environmental changes towards more intensified greenhouse conditions. The study area in the northern Oman mountains offers one of the very few locations where the Cretaceous carbonate margin of the Arabian Plate can be studied along continuous outcrops. Our detailed sedimentological and sequence stratigraphic model of the platform margin demonstrates how major environmental and ecological changes controlled the stratigraphic architecture. The Early Cretaceous platform margin shows high rates of progradation in Berriasian to Hauterivian times followed by lower rates and some aggradation in the Late Hauterivian to Barremian. High-energy bioclastic and oolitic sands were the dominant deposits at the margin. Turbidites were deposited at the slope and in the basin. The Early Aptian platform margin shows a marked change to purely aggradational geometries and a welldeveloped platform barrier that was formed mainly by microbial buildups. The sudden dominance in microbial activity led to cementation and stabilization of the margin and slope and, therefore, a decrease of downslope sediment transport by turbidites. In the Late Aptian, large parts of the Arabian craton were subaerially exposed and a fringing carbonate platform formed. Seven Barremian to Early Albian large-scale depositional sequences reflecting relative sea-level changes are identified on the basis of time lines constrained by physical correlation and biostratigraphy. The reconstruction of the margin geometries suggests that tectonic activity played an important role in the Early Aptian. This was most likely related to global plate reorganization that was accompanied by increased volcanic activity in many parts of the world. Along the northeastern Arabian platform the associated global changes in atmospheric and oceanic circulation are recorded with a change in platform-margin ecology from an ooid-bioclast dominated to a microbial dominated margin. Time-equivalent argillaceous deposits suggest an increase in rainfall and elevated input of nutrients onto the platform. This process contributed to the strongly diminished carbonate production by other organisms and favored microbial activity. The platform margin may thus represent a shallow-marine response to the Early Aptian global changes, commonly associated with an oceanic anoxic event in basinal environments

Effects of microbes and their carbonic anhydrase on Ca2 and Mg2 migration in column-built leached soil-limestone karst systems, 2005, Li W. , Yu L. J. , He Q. F. , Wu Y. , Yuan D. X. , Cao J. H. ,
In natural karst systems, limestone diagenesis can be significantly influenced by bacterial activity in the soil horizon. Here, we investigate the effects of microorganisms on the elements migration of calcium and magnesium in karst soil systems by using different microbial treatments in simulated soil-limestone systems. Two bacterial strains, GLRT102Ca and JFSRT303 were specially studied. The leaching and release of Ca2 in the experiments was characterized by a rapid initial increase followed by a sharp decrease before a gradual approach to equilibrium. In contrast, the Mg2 concentrations in the leachates showed an initial decrease before a gradual approach to equilibrium. Microorganisms significantly promoted Ca2 and Mg2 migration in the simulated systems. The total amounts of Ca2 and Mg2 in leachates varied with microbial treatments. The soil GLRT102Ca columns showed the highest total amount of Ca2 in leachates. This increased by a factor of 2.2 relative to the control columns. The highest total amount of Mg2 in leachates was presented in the soil JFSRT303 columns, which leached 58.0% more total amounts of Mg2 than the control columns. The activities of a microbial specific enzyme, carbonic anhydrase (CA), present in the investigated columns were also examined. Varying levels of CA activities were detected in the leachates collected from soil columns with microbial activity. This suggests that the microbes in soil columns produced and released CA. The mean activity of CA in leachates was significantly correlated with total amount of Ca2 in leachates (r = 0.86, P < 0.01). This implied that microbially produced CA might be a major factor influencing Ca2 release and leaching in natural karst systems. (C) 2005 Elsevier B.V All rights reserved

Land use change and soil nutrient transformations in the Los Haitises region of the Dominican Republic, 2005, Templer P. H. , Groffman P. M. , Flecker A. S. , Power A. G. ,
We characterized soil cation, carbon (C) and nitrogen (N) transformations within a variety of land use types in the karst region of the northeastern Dominican Republic. We examined a range of soil pools and fluxes during the wet and dry seasons in undisturbed forest, regenerating forest and active agricultural sites within and directly adjacent to Los Haitises National Park. Soil moisture, soil organic matter (SOM), soil cations, leaf litter C and pH were significantly greater in regenerating forest sites than agricultural sites, while bulk density was greater in active agricultural sites. Potential denitrification, microbial biomass C and N, and microbial respiration g(-1) dry soil were significantly greater in the regenerating forest sites than in the active agricultural sites. However, net mineralization, net nitrification, microbial biomass C, and microbial respiration were all significantly greater in the agricultural sites on g(-1) SOM basis. These results suggest that land use is indirectly affecting microbial activity and C storage through its effect on SOM quality and quantity. While agriculture can significantly decrease soil fertility, it appears that the trend can begin to rapidly reverse with the abandonment of agriculture and the subsequent regeneration of forest. The regenerating forest soils were taken out of agricultural use only 5-7 years before our study and already have soil properties and processes similar to an undisturbed old forest site. Compared to undisturbed mogote forest sites, regenerating sites had smaller amounts of SOM and microbial biomass N, as well as lower rates of microbial respiration, mineralization and nitrification g(-1) SOM. Initial recovery of soil pools and processes appeared to be rapid, but additional research must be done to address the long-term rate of recovery in these forest stands. (C) 2004, Elsevier Ltd. All rights reserved

Microbiological Activities in Moonmilk Monitored Using Isothermal Microcalorimetry (Cave of Vers Chez Le Brandt, Neuchatel, Switzerland), 2012, Braissant O. , Binderschedler S. , Daniels A. U. , Verrecchia E. P. , Cailleau G.

 

Studies of the influence of microbial communities on calcium carbonate deposits mostly rely on classical or molecular microbiology, isotopic analyses, and microscopy. Using these techniques, it is difficult to infer microbial activities in such deposits. In this context, we used isothermal microcalorimetry, a sensitive and nondestructive tool, to measure microbial activities associated with moonmilk ex-situ. Upon the addition of diluted LB medium and other carbon sources to fresh moonmilk samples, we estimated the number of colony forming units per gram of moonmilk to be 4.8 3 105 6 0.2 3 105. This number was close to the classical plate counts, but one cannot assume that all active cells producing metabolic heat were culturable. Using a similar approach, we estimated the overall growth rate and generation time of the microbial community associated with the moonmilk upon addition of various carbon sources. The range of apparent growth rates of the chemoheterotrophic microbial community observed was between 0.025 and 0.067 h21 and generation times were between 10 and 27 hours. The highest growth rates were observed for citrate and diluted LB medium, while the highest carbon-source consumption rates were observed for low molecular weight organic acids (oxalate and acetate) and glycerol. Considering the rapid degradation of organic acids, glucose, and other carbon sources observed in the moonmilk, it is obvious that upon addition of nutrients during snow melting or rainfall these communities can have high overall activities comparable to those observed in some soils. Such communities can influence the physico-chemical conditions and participate directly or indirectly to the formation of moonmilk.


The effects of UV light on the antimicrobial activities of cave actinomycetes, 2013, Rule Devon, Cheeptham Naowarat

The goal of this study was to determine whether actinomycetes isolated from a volcanic cave in western Canada could produce novel antimicrobial compounds against six multidrug- resistant pathogens when exposed to UV light. One hundred and seventy-six actinomycete strains isolated from Helmcken Falls Cave, Wells Gray Provincial Park, BC, were screened against six pathogens using the “plug assay” in UV light and no light conditions. Of the 176 strains tested, 100 or 57% of the cave actinomycete strains had antimicrobial activities against the pathogens in 124 different instances: 35 instances when exposed to UV and no light, 30 when exposed to UV light, and 59 instances when exposed to no light. The metabolites of six actinomycete strains also lost their antimicrobial activities when exposed to UV light. While the metabolites produced by these strains have yet to be determined, exposure to lighted environments may either deactivate or enhance the antimicrobial activities of cave actinomycete strains. This study represents a confirmation that cave actinomycetes are potential sources of novel antimicrobial compounds and also is the first report of the enhancement of antimicrobial activities of some cave bacteria by exposure to UV light. Further investigation of the role of UV light with respect to activation/deactivation of antimicrobial activities of cave actinomycetes is required.


Results 1 to 8 of 8
You probably didn't submit anything to search for