Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That sheet is a thin coating of calcium carbonate formed on walls, shelves, benches, and terraces by trickling water [10].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for microbial activity (Keyword) returned 29 results for the whole karstbase:
Showing 1 to 15 of 29
MICROBIAL DECOMPOSITION OF ELM AND OAK LEAVES IN A KARST AQUIFER, 1993, Eichem Ac, Dodds Wk, Tate Cm, Edler C,
Dry Chinquapin oak (Quercus macrocarpa) and American elm (Ulmus americana) leaves were placed in four microcosms fed by groundwater springs to monitor changes in dry mass, ash-free dry mass, and microbial activity over a 35-day period. Oxygen microelectrodes were used to measure microbial activity and to estimate millimeter-scale heterogeneity in that activity. Oak leaves lost mass more slowly than elm leaves. Generally, there was a decrease in total dry weight over the first 14 days, after which total dry weight began to increase. However, there were consistent decreases in ash-free dry mass over the entire incubation period, suggesting that the material remaining after initial leaf decomposition trapped inorganic particles. Microbial activity was higher on elm leaves than on oak leaves, with peak activity occurring at 6 and 27 days, respectively. The level of oxygen saturation on the bottom surface of an elm leaf ranged between 0 and 75% within a 30-mm2 area. This spatial heterogeneity in O2 saturation disappeared when the water velocity increased from 0 to 6 cm s-1. Our results suggest that as leaves enter the groundwater, they decompose and provide substrate for microorganisms. The rate of decomposition depends on leaf type, small-scale variations in microbial activity, water velocity, and the length of submersion time. During the initial stages of decomposition, anoxic microzones are formed that could potentially be important to the biogeochemistry of the otherwise oxic aquifer

Seasonal Effects on the Geochemical Evolution of the Logsdon River, Mammoth Cave, Kentucky., 1998, Anthony, Darlene M. , Ms

The following research describes the collection and evaluation of geochemical data from the Logsdon River, an open-flow conduit that drains a portion of the Turnhole Spring drainage basin within the Mammoth Cave karst aquifer of south-central Kentucky. This spatial survey of nearly 10 km of continuous base-level conduit included seasonal sampling of carbon dioxide partial pressures (PCO2), dissolved ions, and saturation indices for calcite (SIcal). The highest PCO2 are found at the upstream site closest to the Sinkhole Plain recharge area, which creates undersaturated conditions. Rapid outgassing of CO2 into the cave atmosphere creates oversaturated conditions for several thousand meters. This change in chemistry results in the accumulation of travertine in these areas. A boost in PCO2 roughly half-way through the flow path returns the water to slightly undersaturated conditions. The most likely source for additional CO2 is in-cave organic decay, as the boost also occurs during winter months when microbial activity in the soil is at a minimum. A general decline in Ca2+, Mg2+, and HCO3- concentrations occurred over the distance through the Logsdon River conduit. This decline may reflect a diluting of water by localized inputs from the Mammoth Cave Plateau and precipitation of travertine along the flow path. Although values for all parameters are greater in summer than winter, the trend in evolution is similar for both seasonal extremes.
The nature of the transition from summer to winter conditions in the aquifer was investigated by way of an intensive study of the geochemistry at the Logsdon River monitoring well. The relationship between conductivity (spC) and pH was evaluated during both seasons in an attempt to predict the activity of hydrogen for any given water sample, based on continuous spC measurements at the well. Data collected during the 1997-98 seasonal transitions supported a single, nonlinear regression equation that may represent two distinct seasonal regimes.


Calcite Moonmilk: Crystal Morphology and Environment of Formation in Caves in the Italian Alps, 2000, Borsato A, Frisia S, Jones B, Van Der Borg K,
Calcite moonmilk, which is a cave deposit formed of calcite crystals and water, is found in many caves in the Italian Alps. These modern and ancient deposits are formed of fiber calcite crystals, 50-500 nm wide and 1 to > 10 {micro}m long, and polycrystalline chains that have few crystal defects. Radiocarbon dating indicates that most moonmilk deposits in these caves are fossil and that for most precipitation ceased [~] 6400 cal years BP, at the end of the mid-Holocene Hypsithermal. In the caves of the Italian Alps, the optimal conditions for formation of calcite moonmilk are: (1) a temperature range of 3.5-5.5{degrees}C, (2) low discharge volumes of seepage waters that are slightly supersaturated (SICAL = 0.0 to [~] 0.2), and (3) relative humidity that is at or close to 100%. Microbial activity apparently did not play an active role in the formation of the calcite moonmilk. Conditions for moonmilk formation are typically found in caves that are located beneath land surfaces, which are soil covered and support a conifer forest. Precipitation of the fiber calcite crystals apparently involved very slow flow of slightly supersaturated fluids. The fact that moonmilk appears to form under a narrow range of environmental conditions means that this cave deposit has potential as a paleoclimatic indicator in high alpine karst areas

Spatial and temporal patterns of bacterial density and metabolic activity in a karst aquifer, 2001, Simon K. S. , Gibert J. , Petitot P. , Laurent R. ,
Karst aquifers are heterotrophic ecosystems fueled by organic matter imported from the surface. The temporal pattern of floods influences organic matter import and the spatial distribution of organic matter and biofilms in aquifer structural zones. We investigated spatial and temporal patterns of bacterial density and activity as indicators of energy availability and microbial dynamics in a karst aquifer. During baseflow, bacterial density and microbial hydrolytic activity were similar in the upper and lower zones of the aquifer. Floods apparently scoured aquifer biofilms and trans ported soil bacteria into the aquifer, increasing inactive bacterial density in the water column. Respiring bacterial density did not respond to floods and changed little over time. The overall proportion of total bacteria that were respiring was very high on some dates, resulting from a reduction of inactive cell density during flood recession. Floods appear to be key events in scouring senescent microbial assemblages in karst aquifers and stimulating microbial recolonization of the aquifer matrix. We conclude that a conceptual model of karst aquifer structure and function should incorporate changes caused by alternation between flooding and drying in the aquifer

Investigations of microbial origin of karst corrosion of soils depending on different temperatures, 2001, Zambo L. , Horvath G. , Telbisz T. ,
The acids accumulating in soils and controlling the solution of carbonates including the predominant CO2, mostly derive from three processes: i) root respiration of higher plants; ii) decomposition of soil organic matter by microorganisms (microbiota) and iii) other decomposition processes not associated with microbial activities. The solution effect under rendzina soils is primarily used for the dissolution of the enclosed limestone fragments and thus here the solution of bedrock is of limited scale. Below karst soils of high clay content the corrosion of bedrock is more intensive than under rendzinas. On the whole, the amount of carbonates dissolved and transported Into the depths of the karst is smaller than below rendzinas. In each soil type studied the solution caused by microbial activities manifold exceeds the rate of solution resulting from temperature factor but there is a manifest dropping trend from rendzina to clays

Microbial activity in caves - a geological perspective., 2001, Jones B.

The Barremian-Aptian Evolution of The Eastern Arabian Carbonate Platform Margin (Northern Oman), 2003, Hillgartner Heiko, Van Buchem Frans S. P. , Gaumet Fabrice, Razin Philippe, Pittet Bernard, Grotsch Jurgen, Droste Henk,
Carbonate platform margins are sensitive recorders of changes in sea level and climate and can reveal the relative importance of global and regional controls on platform evolution. This paper focuses on the Barremian to Aptian interval (mid Cretaceous), which is known for climatic and environmental changes towards more intensified greenhouse conditions. The study area in the northern Oman mountains offers one of the very few locations where the Cretaceous carbonate margin of the Arabian Plate can be studied along continuous outcrops. Our detailed sedimentological and sequence stratigraphic model of the platform margin demonstrates how major environmental and ecological changes controlled the stratigraphic architecture. The Early Cretaceous platform margin shows high rates of progradation in Berriasian to Hauterivian times followed by lower rates and some aggradation in the Late Hauterivian to Barremian. High-energy bioclastic and oolitic sands were the dominant deposits at the margin. Turbidites were deposited at the slope and in the basin. The Early Aptian platform margin shows a marked change to purely aggradational geometries and a welldeveloped platform barrier that was formed mainly by microbial buildups. The sudden dominance in microbial activity led to cementation and stabilization of the margin and slope and, therefore, a decrease of downslope sediment transport by turbidites. In the Late Aptian, large parts of the Arabian craton were subaerially exposed and a fringing carbonate platform formed. Seven Barremian to Early Albian large-scale depositional sequences reflecting relative sea-level changes are identified on the basis of time lines constrained by physical correlation and biostratigraphy. The reconstruction of the margin geometries suggests that tectonic activity played an important role in the Early Aptian. This was most likely related to global plate reorganization that was accompanied by increased volcanic activity in many parts of the world. Along the northeastern Arabian platform the associated global changes in atmospheric and oceanic circulation are recorded with a change in platform-margin ecology from an ooid-bioclast dominated to a microbial dominated margin. Time-equivalent argillaceous deposits suggest an increase in rainfall and elevated input of nutrients onto the platform. This process contributed to the strongly diminished carbonate production by other organisms and favored microbial activity. The platform margin may thus represent a shallow-marine response to the Early Aptian global changes, commonly associated with an oceanic anoxic event in basinal environments

Effects of microbes and their carbonic anhydrase on Ca2 and Mg2 migration in column-built leached soil-limestone karst systems, 2005, Li W. , Yu L. J. , He Q. F. , Wu Y. , Yuan D. X. , Cao J. H. ,
In natural karst systems, limestone diagenesis can be significantly influenced by bacterial activity in the soil horizon. Here, we investigate the effects of microorganisms on the elements migration of calcium and magnesium in karst soil systems by using different microbial treatments in simulated soil-limestone systems. Two bacterial strains, GLRT102Ca and JFSRT303 were specially studied. The leaching and release of Ca2 in the experiments was characterized by a rapid initial increase followed by a sharp decrease before a gradual approach to equilibrium. In contrast, the Mg2 concentrations in the leachates showed an initial decrease before a gradual approach to equilibrium. Microorganisms significantly promoted Ca2 and Mg2 migration in the simulated systems. The total amounts of Ca2 and Mg2 in leachates varied with microbial treatments. The soil GLRT102Ca columns showed the highest total amount of Ca2 in leachates. This increased by a factor of 2.2 relative to the control columns. The highest total amount of Mg2 in leachates was presented in the soil JFSRT303 columns, which leached 58.0% more total amounts of Mg2 than the control columns. The activities of a microbial specific enzyme, carbonic anhydrase (CA), present in the investigated columns were also examined. Varying levels of CA activities were detected in the leachates collected from soil columns with microbial activity. This suggests that the microbes in soil columns produced and released CA. The mean activity of CA in leachates was significantly correlated with total amount of Ca2 in leachates (r = 0.86, P < 0.01). This implied that microbially produced CA might be a major factor influencing Ca2 release and leaching in natural karst systems. (C) 2005 Elsevier B.V All rights reserved

Land use change and soil nutrient transformations in the Los Haitises region of the Dominican Republic, 2005, Templer P. H. , Groffman P. M. , Flecker A. S. , Power A. G. ,
We characterized soil cation, carbon (C) and nitrogen (N) transformations within a variety of land use types in the karst region of the northeastern Dominican Republic. We examined a range of soil pools and fluxes during the wet and dry seasons in undisturbed forest, regenerating forest and active agricultural sites within and directly adjacent to Los Haitises National Park. Soil moisture, soil organic matter (SOM), soil cations, leaf litter C and pH were significantly greater in regenerating forest sites than agricultural sites, while bulk density was greater in active agricultural sites. Potential denitrification, microbial biomass C and N, and microbial respiration g(-1) dry soil were significantly greater in the regenerating forest sites than in the active agricultural sites. However, net mineralization, net nitrification, microbial biomass C, and microbial respiration were all significantly greater in the agricultural sites on g(-1) SOM basis. These results suggest that land use is indirectly affecting microbial activity and C storage through its effect on SOM quality and quantity. While agriculture can significantly decrease soil fertility, it appears that the trend can begin to rapidly reverse with the abandonment of agriculture and the subsequent regeneration of forest. The regenerating forest soils were taken out of agricultural use only 5-7 years before our study and already have soil properties and processes similar to an undisturbed old forest site. Compared to undisturbed mogote forest sites, regenerating sites had smaller amounts of SOM and microbial biomass N, as well as lower rates of microbial respiration, mineralization and nitrification g(-1) SOM. Initial recovery of soil pools and processes appeared to be rapid, but additional research must be done to address the long-term rate of recovery in these forest stands. (C) 2004, Elsevier Ltd. All rights reserved

The first cave occurrence of jurbanite [Al(OH SO4) * 5H2O], associated with alunogen [Al2(SO4)3 * 17H2O] and tschermigite [NH4Al(SO4)2 * 12H2O]: thermal-sulfidic Serpents Cave, France, 2007, Audra, P. And Hobla, F.
Serpents Cave, located in the French Alps, contains a sulfidic-thermal (41 uC) karst spring. Degassing of the sulfidic vapor produces diverse sulfate minerals. The reaction with the limestone host-rock produces gypsum, anhydrite, sulfur, and magnesium calcite. The reaction with an artificial material (aluminum door) produces alunogen, tschermigite, and jurbanite. Microbial activity is suspected in the genesis of sulfur and tschermigite. Aluminum sulfates have usually been reported in mines, in volcanic settings, and in rock-shelters in phyllites. Some of these alum minerals such as tschermigite are rarely observed in caves, and jurbanite is identified here for the first time in a cave. Serpents Cave is therefore an important site for sulfate minerals in caves, even if the aluminum sulfates should be considered border minerals because they originate from sulfur vapor reaction with artificial media.

The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments, 2007, Barton Hazel A. , Taylor Nicholas M. , Kreate Michael P. , Springer Austin C. , Oehrle Stuart A. And Bertog Janet L.
Despite extremely starved conditions, caves contain surprisingly diverse microbial communities. Our research is geared toward understanding what ecosystems drivers are responsible for this high diversity. To asses the effect of rock fabric and mineralogy, we carried out a comparative geomicrobiology study within Carlsbad Cavern, New Mexico, USA. Samples were collected from two different geologic locations within the cave: WF1 in the Massive Member of the Capitan Formation and sF88 in the calcareous siltstones of the Yates Formation. We examined the organic content at each location using liquid chromatography mass spectroscopy and analyzed microbial community structure using molecular phylogenetic analyses. In order to assess whether microbial activity was leading to changes in the bedrock at each location, the samples were also examined by petrology, X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). Our results suggest that on the chemically complex Yates Formation (sF88), the microbial community was significantly more diverse than on the limestone surfaces of the Capitan (WF1), despite a higher total number of cells on the latter. Further, the broader diversity of bacterial species at sF88 reflected a larger range of potential metabolic capabilities, presumably due to opportunities to use ions within the rock as nutrients and for chemolithotrophic energy production. The use of these ions at sF88 is supported by the formation of a corrosion residue, presumably through microbial scavenging activities. Our results suggest that rock fabric and mineralogy may be an important driver of ecosystem function and should be carefully reviewed when carrying out microbial community analysis in cave environments.

The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments., 2007, Barton Hazel A. , Taylor Nicholas M. , Kreate Michael P. , Springer Austin C. , Oehrle Stuart A, Bertog Janet L.
Despite extremely starved conditions, caves contain surprisingly diverse microbial communities. Our research is geared toward understanding what ecosystems drivers are responsible for this high diversity. To asses the effect of rock fabric and mineralogy, we carried out a comparative geomicrobiology study within Carlsbad Cavern, New Mexico, USA. Samples were collected from two different geologic locations within the cave: WF1 in the Massive Member of the Capitan Formation and sF88 in the calcareous siltstones of the Yates Formation. We examined the organic content at each location using liquid chromatography mass spectroscopy and analyzed microbial community structure using molecular phylogenetic analyses. In order to assess whether microbial activity was leading to changes in the bedrock at each location, the samples were also examined by petrology, X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). Our results suggest that on the chemically complex Yates Formation (sF88), the microbial community was significantly more diverse than on the limestone surfaces of the Capitan (WF1), despite a higher total number of cells on the latter. Further, the broader diversity of bacterial species at sF88 reflected a larger range of potential metabolic capabilities, presumably due to opportunities to use ions within the rock as nutrients and for chemolithotrophic energy production. The use of these ions at sF88 is supported by the formation of a corrosion residue, presumably through microbial scavenging activities. Our results suggest that rock fabric and mineralogy may be an important driver of ecosystem function and should be carefully reviewed when carrying out microbial community analysis in cave environments.

The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments, 2007, Barton H. A. , Taylor N. M. , Kreate M. P. , Springer A. C. , Oehrle S. A. , Bertog J. L.

Despite extremely starved conditions, caves contain surprisingly diverse microbial communities. Our research is geared toward understanding what ecosystems drivers are responsible for this high diversity. To asses the effect of rock fabric and mineralogy, we carried out a comparative geomicrobiology study within Carlsbad Cavern, New Mexico, USA. Samples were collected from two different geologic locations within the cave: WF1 in the Massive Member of the Capitan Formation and sF88 in the calcareous siltstones of the Yates Formation. We examined the organic content at each location using liquid chromatography mass spectroscopy and analyzed microbial community structure using molecular phylogenetic analyses. In order to assess whether microbial activity was leading to changes in the bedrock at each location, the samples were also examined by petrology, X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). Our results suggest that on the chemically complex Yates Formation (sF88), the microbial community was significantly more diverse than on the limestone surfaces of the Capitan (WF1), despite a higher total number of cells on the latter. Further, the broader diversity of bacterial species at sF88
reflected a larger range of potential metabolic capabilities, presumably due to opportunities to use ions within the rock as nutrients and for chemolithotrophic energy production. The use of these ions at sF88 is supported by the formation of a corrosion residue, presumably through microbial scavenging activities. Our results suggest that rock fabric and mineralogy may be an important driver of ecosystem function and should be carefully reviewed when carrying out microbial community analysis in cave environments.


MICROORGANISMS IN HYPOGEON: EXAMPLES FROM SLOVENIAN KARST CAVES, 2008, Mulec, Janez

In caves microorganisms inhabit distinct habitats where they develop various interactions. As an evidence of microbial activity several features can be identified. Microorganisms are involved both in lithogenic and litholitic processes. Besides heterotrophs in caves autotrophic organisms can be also expected. Some cyanobacteria and microalgae in caves can survive even at photon flux densities lower than their photosynthetic compensation point. In the paper up-to-date identified groups of microorganisms (bacteria, cyanobacteria, microalgae, fungi and protozoa) with their localities in Slovenian caves are presented. Especially bacteria from caves, as the most diverse group, offer immense biotechnological and bioremediation potential. In caves microbial biomass can be considered a considerable food source for cave-dwelling higher organisms. Caves in Slovenia offer great chances to discover new species, as was fungus Mucor troglophilus discovered in association with the cave cricket Troglophilus neglectus.


Variability in terrestrial and microbial contributions to dissolved organic matter fluorescence in the Edwards Aquifer, Central Texas, 2009, Birdwell J. E. And Engel A. S.
Most cave and karst ecosystems are believed to be dependent on an influx of allochthonous organic carbon. Although microbes are largely responsible for the fate of dissolved organic matter (DOM) in karst, the role of microbes in chemosynthetic (autochthonous) production and processing of DOM has received limited attention. Chromophoric dissolved organic matter (CDOM) is the fraction of DOM that absorbs ultraviolet and visible light, and differences in the fluorescence spectral characteristics of humic-like (terrigenous) and protein-like (microbially-derived) CDOM allow for tracing the relative contributions of allochthonous or autochthonous carbon sources, respectively, in water. We investigated CDOM in karst-aquifer well and spring waters along the fresh- to saline-water transition zone of the Edwards Aquifer, Central Texas, over a four year period. The groundwater fluorescence spectral characteristics were distinct from those generally observed in surface waters and soil porewaters. The dominant source of organic carbon in the aquifer waters may be a product of chemolithoautotrophic primary production occurring in situ. It is possible that the absence of a strong terrestrial CDOM signature may be due to filtering effects in the epikarst or rapid utilization by heterotrophs in the aquifer. Our results indicate that intense recharge following periods of drought may influence the intensity of microbial activity, either due to an influx of DOM or nutrients from the surface that was not quantified by our analyses or because of increased in situ autotrophic activity, or both. The variable contributions of allochthonous and autochthonous DOM during and after recharge events call into question whether karst aquifer ecosystems are necessarily dependent on allochthonous organic matter.

Results 1 to 15 of 29
You probably didn't submit anything to search for