Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That coefficient of compressibility is compressibility is the aptitude of the soil to be deformed. it is expressed by means of a coefficient which is the ratio between a void ratio decrease from eo to e and an increase in effective stress. the value a v = e0-e)p represents the coefficient of compressibility for the range p0 to p0 + p.units are usually cm2/kg [21]. see also coefficient of volume compressibility.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for national-park (Keyword) returned 18 results for the whole karstbase:
Showing 1 to 15 of 18
The Proposed National Park in the Mammoth Cave Region and the Kentucky Geological Survey, 1928, Swinnerton A. C. ,

Chinese Walls of New Cave, Carlsbad Caverns National Park, 1956, Black Dm,

Magnetostratigraphy of Sediments in Mammoth Cave, Kentucky, 1982, Schmidt Victor A. ,
Clastic sediment deposits found within the caves of Mammoth Cave National Park have yielded a magnetostratigraphic pattern of magnetic polarity reversals which indicates that they were deposited over a range of at least 1 million and most likely 2 million years

Radon concentrations range from < 185 to 3,515 Bq m-3 throughout Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Concentrations in the entrance passages and areas immediately adjacent to these passages are controlled by outside air temperature and barometric pressure, similar to other Type 2 caves. Most of the cave is developed in three geographic branches beneath the entrance passages; these areas maintain Rn levels independent of surface effects, an indication that Rn levels in deep, complex caves or mines cannot be simply estimated by outside atmospheric parameters. These deeper, more isolated areas are subject to convective ventilation driven by temperature differences along the 477-m vertical extent of the cave. Radon concentrations are used to delineate six microclimate zones (air circulation cells) throughout the cave in conjunction with observed airflow data. Suspected surface connections contribute fresh air to remote cave areas demonstrated by anomalous Rn lows surrounded by higher values, the presence of mammalian skeletal remains, CO2 concentrations and temperatures lower than the cave mean, and associated surficial karst features

The karst aquifer of the well-known Fontaine de Vaucluse has been recently studied, results have been got about delimitation of the system and its working. Geological data (lithology and structure) have allowed to delimit an 1115 Km2 intake area including Ventoux-Lure north facing range (1,909-1,826 m) and the Plateau which is prolonging it southwards (Fig. 1 and 2). The average altitude of the whole area, obtained by balancing elevation belt surfaces, is about 870 m. This elevation squares with results of tracing tests (Fig. 3), environmental physical, chemical and isotopic tracings, that allow to value a 850 m average altitude for the intake area (Fig. 4). The moisture balance has been computed from an altitude belts climatic model, using local rain an temperature gradients (Fig. 5 and Table II), because the weather network is not representative. So, rainfalls rise of about 55 mm per 100 m elevation and temperature decreases of about 0.5-degrees-C per 100 m. The consequence of these two antagonist phenomena is the quasi constant value of actual evapotranspiration on each altitude belt. With the Fig. 7 organigram, curves of effective rainfalls and infiltration coefficient versus elevation can be plotted (Fig. 6). This computation shows that 3/4 of the total and the whole of dry season effective rainfalls are provided by the part of the intake area situated above the average altitude: on the lowest belt, effective rainfalls are only 120 mm per year and increase to 1380 mm on the upper section (Fig. 8 and Table 1). The weighted effective rainfalls are about 570 mm per year for the whole intake area. Hydrodynamical and physico-chemical studies show, despite its large size, the weak inertia of the system, so proves its good karstification, that confirms for the whole system the pin-point speleological observations. The discharge of the spring, which average value is 21 m3.s-1 (only 18 for the last ten years), can exceed 100 m3.s-1 and the minimum has never been lower than 3.7 m3.s-1 (Fig. 9). When it rains on the intake area, the increase of the discharge is very sudden in a rainy period : one to four days. This short delay is due to seepage through epikarst and unsaturated zone. During dry periods, the spring reaction is deadened, due to storage in the unsaturated zone. The silica content distribution was plotted during several hydrokinematical phases (Fig. 10). It shows: an almost unimodal distribution for the 8 km2 fissured limestone aquifer of Groseau; a multimodal one for the 1115 km2 karst aquifer of Fontaine de Vaucluse. This proves that karstification is more important than size in the response of the system. Weak summer rainfalls do not influence the discharge, nevertheless they influence chemistry of the spring water, and so interrupts the water depletion phasis. Then, the decrease of discharge can continue after the end of the chemical depletion phasis, water which is overflowing after summer rainfalls (in a dry period) is influenced hy the chemistry of seepage water : on the graph of a principal components analysis, done on chemical variables. an hysteresis phenomenon can be seen (Fig. 11). A discriminant analysis (Fig. 12) confirms that these autumn waters, with high ratio seepage tracers, are not reserve waters from the saturated zone. The ratio of reserve water in the total discharge, is preponderant: 3/4 and 2/3 respectively of the yearly runoff volumes for 1981 and 1982 (Fig. 13), but an important part of these reserves can be stored in the unsaturated zone. This storage capacity can be valued by different means: transposing to Vaucluse (1115 km2) the volume measured on another karst system in the Pyrenees (13 km2); it gives about 100 million m2; using setting parameters of Bezes model (1976) on the same aquifer: it gives 113 million m3; using depletion curves, that show, for instance during the 1989 summer and autumn dry period, a 80 million m3 volume. In all cases, we get a value of about one hundred million m3 for the storage capacity of the unsaturated zone. With a 20 m range of fluctuation for the water table and with a 10(-2) specific yield, on a 500 to 1,000 km2 saturated zone, the zone of fluctuation can release about 10 to 20 million m3. Then, the volume of water stored in the whole saturated zone, with a 300 m minimum thickness (depth of the waterlogged pit of the Fontaine), a 500 km2 minimum surface and a 10(-3) specific yield, is about 150 million m3, including 27 million m3 stored in the channels. So, the unsaturated zone represents a significant part of the whole storage capacity and most of the yearly renewable reserves. Paradoxically, the biggest french spring is not tapped at all; as its intake area is neither a regional nor a national park, no general protection covers it : because of its good karstification, the vulnerability of the system is important. Good quality of water is attributable to the low population and human activities density on the intake area (4 A great part of the intake area is uncultivated (large forest and ''garrigues'' areas). Due to the lack of surface water and scantness of soils, agriculture is not intensive (lavender, thyme, sage and bulk wheat fields. meadowlands). On the mountainous zone, roads are salted in winter and snowmelt water can reach a significantly high chloride ratio than in a natural climatic functioning (for instance 25 mg.l-1 in Font d'Angiou where the ratio would have been 3 mg.l-1). As tourism is developing both on the mountain and on the plateau, the management of the highest intake area must be carefully held: its part is preponderant in the feeding of the system

Lechuguilla Cave is a deep, extensive, gypsum- and sulfur-bearing hypogenic cave in Carlsbad Caverns National Park, New Mexico, most of which (> 90%) lies more than 300 m beneath the entrance. Located in the arid Guadalupe Mountains, Lechuguilla's remarkable state of preservation is partially due to the locally continuous Yates Formation siltstone that has effectively diverted most vadose water away from the cave. Allocthonous organic input to the cave is therefore very limited, but bacterial and fungal colonization is relatively extensive: (1) Aspergillus sp. fungi and unidentified bacteria are associated with iron-, manganese-, and sulfur-rich encrustations on calcitic folia near the suspected water table 466 m below the entrance; (2) 92 species of fungi in 19 genera have been identified throughout the cave in oligotrophic (nutrient-poor) ''soils'' and pools; (3) cave-air condensate contains unidentified microbes; (4) indigenous chemoheterotrophic Seliberius and Caulobacter bacteria are known from remote pool sites; and (5) at least four genera of heterotrophic bacteria with population densities near 5 x 10(5) colony-forming units (CFU) per gram are present in ceiling-bound deposits of supposedly abiogenic condensation-corrosion residues. Various lines of evidence suggest that autotrophic bacteria are present in the ceiling-bound residues and could act as primary producers in a unique subterranean microbial food chain. The suspected autotrophic bacteria are probably chemolithoautotrophic (CLA), utilizing trace iron, manganese, or sulfur in the limestone and dolomitic bedrock to mechanically (and possibly biochemically) erode the substrate to produce residual floor deposits. Because other major sources of organic matter have not been detected, we suggest that these CLA bacteria are providing requisite organic matter to the known heterotrophic bacteria and fungi in the residues. The cavewide bacterial and fungal distribution, the large volumes of corrosion residues, and the presence of ancient bacterial filaments in unusual calcite speleothems (biothems) attest to the apparent longevity of microbial occupation in this cave

An examination of short-term variations in water quality at a karst spring in Kentucky, 1996, Ryan M. , Meiman J. ,
Water quality at many karst springs undergoes very high amplitude but relatively brief degradation following influxes of runoff. Accurately recording transient variations requires more rigorous sampling strategies than traditional methods, A pilot study to determine the usefulness of high-frequency, flow-dependent sampling strategies, combined with coincidental quantitative dye tracer tests, was implemented in the Big Spring Ground-Water Basin in Mammoth Cave National Park, Kentucky. Data recorded following two separate runoff events showed that the concentrations of two nonpoint source pollutants, fecal coliform bacteria and suspended sediment, greatly exceeded prerunoff event values for very short periods of time, A phreatic conduit segment, calculated at 17 million liters in volume, instantaneously propagated head changes, caused by direct runoff entering the aquifer, from the ground-water inputs to Big Spring, A significant delay between the initial increases in discharge and the arrival of direct runoff, as indicated by a steady decrease in specific conductance, represented the time required to displace this volume of phreatic water, The delay showed that sampling a karst spring only during peak discharge would be an unreliable sampling method. Runoff from two different subcatchments was tagged with tracer dye and the timing of the passage of the resultant dye clouds through Big Spring were compared to water quality variations, Distinct lag times between the arrival of direct runoff at Big Spring and the bacteria and suspended sediment waveforms were shown through the concurrent quantitative tracer tests to be related to the areal distribution of land-cover type within the basin

Limestone dissolution processes in beke doline Aggtelek National Park, Hungary, 1997, Zambo L. , Ford D. C. ,
Aggtelek National Park, Hungary, is a limestone karst upland characterized by karren, dolines and river caves. For a period of two years, climatic and carbonate dissolution variables were monitored at four depths in a 7.5 m shaft through the soil fill in the floor of a typical large (150m diameter) doline. Results are compared to other monitoring stations in shallow soils on side slopes. Runoff and groundwater flow are focused into the base of the doline soil fill, where moisture is maintained at 70-90 per cent field capacity and temperatures permit year-round production of soil CO2. The capacity to dissolve calcite (limestone) ranges from c. 3 g m(-2) per year beneath thin soils on the driest slopes to 17-30 g m(-2) per year in the top 1-2 m of doline till and at its base 5-7 m below.

Depositional Facies and Aqueous-Solid Geochemistry of Travertine-Depositing Hot Springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.), 2000, Fouke Bw, Farmer Jd, Des Marais Dj, Pratt L, Sturchio Nc, Burns Pc, Discipulo Mk,
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73{degrees}C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72{degrees}C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62{degrees}C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite 'ice sheets', calcified bubbles, and aggregates of aragonite needles ('fuzzy dumbbells') precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54{degrees}C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30{degrees}C) is composed of calcite spherules and calcite 'feather' crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding {delta}13C. Travertine {delta}13C and {delta}18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature ([~]50-73{degrees}C) depositional facies. Conversely, travertine precipitating in the lower-temperature (<[~]50{degrees}C) depositional facies exhibits {delta}13C and {delta}18O values that are as much as 4{per thousand} less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide-oxidizing microbes, preliminary {delta}34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry

Forest recovery in abandoned agricultural lands in a karst region of the Dominican Republic, 2000, Rivera L. W. , Zimmerman J. K. , Aide T. M. ,
This study documents the status of forest vegetation in the karst region of Los Haitises National Park, Dominican Republic, following the abandonment of pastures (less than or equal to 5 years), young (less than or equal to 5 years) 'conucos' (mixed plantings), old (7-30 years) conucos, and cacao plantations (> 25 years). We compared these sites to vegetation characteristics of patches of forest in karst valleys ('old forest'-too old to know their exact land use) and on mogote tops with no recent history of human disturbance. The youngest sites date to when squatters were removed from Los Haitises National Park. Forest structure (density, basal area, and species richness of woody plants greater than or equal to 1 cm DBH) were all significantly affected by land use. Density was highest in intermediate-aged valley sites (old conucos) and mogote tops, while both basal area and species richness tended to increase with age of abandonment. Although cacao plantations had been abandoned for more than 25 years the species diversity was low, due to continued regeneration of this persistent crop. Abandoned pastures had the greatest nonwoody biomass and were dominated by the fern Nephrolepis multiflora which had completely replaced pasture grasses. An ordination of the woody plant communities separated the mogote tops from valleys, emphasizing the strong control that topography has on the forest community in moist and wet tropical forests on karst substrates. Valley sites were arranged in the ordination in order of their age, suggesting a successional sequence converging on the composition of the 'old forest' sites

Karst lakes of the Protected Landscape Area - Biosphere Reserve Slovensky kras karst and Aggtelek National Park, 2001, Barancok P,
In the extent karst area belonging to the Protected Landscape Area - Biosphere Reserve Slovensky kras karst and Aggtelck National Park arc several lakes. They arc very significant biotopes. At present they arc extincted rapidly, their water surface is reduced, they are silted relatively quickly and they arc overgrown by wetland vegetation. In order to clarify the causes of their extinction the development of 3 takes of the area Slovensky kras karst - lakes Jastericicic jazero lake, Smradrave jazierko lake and Fardrova jama lake and 3 lakes of the area Aggtelck Karst - lakes Aggtelcki-to, voros-to and Kardos-to were evaluated. From the area Slovensky kras karst are well known 2 further lakes - Lucanske jazierko lake and Cierne jazero lake. Climatic changes and prevailingly negative impact of man have decisive influence on the development of all lakes in the mentioned area

Landscape-ecological problems in Aggtelek National Park with special regard to sustainable silviculture, 2001, Baranykevei I, Botos C,
The Aggtelek National Park is situated in Northern Hungary. Thus, from the North, the National Park has joint border with the Slovak Karst Protected Landscape Area in the Slovak Republic. Considering the geology, landscape geography and cultural history of the region, these two protected areas form an integral unit and both were declared as biosphere reserves in 1979 (UNESCO's Man and Biosphere Program). The area of the Aggtelck National Park has being protected by law since 1978 and was declared as a National Park in 1985. The caves of the Slovak Karst and the Aggtelck Karst were inscribed in the UNESCO's World Heritage List in 1995. In our presentation we investigate the problems of the land use types of the Aggtelck National Park with special regard to the sustainable silviculture. The presentation shows a planning method which is based on forestry as well as ecological factors, and applies Arc/Info GIS software

Distribution, morphology, and origins of Martian pit crater chains, 2004, Wyrick D. , Ferrill D. A. , Morris A. P. , Colton S. L. , Sims D. W. ,
Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution ( analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView(TM) Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from ( 1) visible faulting to ( 2) faults and pits to ( 3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development

Use of stable isotopes to quantify flows between the Everglades and urban areas in Miami-Dade County Florida, 2004, Wilcox W. M. , Sologabriele H. M. , Sternberg L. O. R. ,
An isotopic study was performed to assess the movement of groundwater for a site located in Miami-Dade County, Florida. The site encompasses portions of a protected wetland environment (northeast Everglades National Park) and suburban residential Miami, incorporating municipal pumping wells and lakes formed by rock mining. Samples of ground, surface, and rainwater were analyzed for their isotopic composition (oxygen-18 and deuterium). Various analytical and graphical techniques were used to analyze this data and two conceptual box models were developed to quantify flows between different regions within the site. Results from this study indicate that the aquifer underlying the study site (the Biscayne aquifer) is highly transmissive with the exception of two semi-confining layers of reduced hydraulic conductivity. Everglades surface water infiltrates into the aquifer and migrates east toward residential areas. In these urban areas, 'shallow' groundwater (above the deeper semi-confining layer) is substantially affected by urban rainfall while 'deep' groundwater (below the deeper semi-confining layer) maintains a composition similar to that of Everglades water. Rock mining lakes in the area provide 'breaks' in the semi-confining layers that allow for mixing of shallow and deep groundwater. As water travels eastward, municipal well intakes, screened to a depth below the deeper semi-confining layer, draw upon not only shallow urban water (predominantly comprised of urban rainfall) and lake water (having influences from both urban rainfall and Everglades water) but also deep water that originated in the Everglades. Results from one of the box models estimate that over 60% of the water being removed by municipal pumping originated in the Everglades. These conclusions suggest that Everglades water, both directly through deep groundwater flow and indirectly through mixing with rock-mining lakes, is being drawn into the operating municipal wellfield.

C and O stable isotope variability in recent freshwater carbonates (River Krka, Croatia), 2004, Lojen S. , Dolenec T. , Vokal B. , Cukrov N. , Mihelcic G. , Papesch W. ,
Three types of recent carbonate precipitates from the River Krka, Croatia, were analysed: (1) bulk tufa from four main cascades in a 34 km long section of the river flow through the Krka National Park; (2) a laminar stromatolite-like incrustation formed in the tunnel of a hydroelectric power plant close to the lowest cascade; and (3) recent precipitates collected on artificial substrates during winter, spring and summer periods. Stable isotope compositions of carbon (delta(13)C) and oxygen (delta(18)O) in the carbonate and organic carbon (delta(13)C(org)) were determined and compared with delta(18)O of water and delta(13)C of dissolved inorganic carbon (DIC). The source of DIC, which provides C for tufa precipitation, was determined from the slope of the line ([DIC]/[DIC0]-1) vs. (delta(13)C-DIC x ([DIC]/[DIC0])) (Sayles & Curry, 1988). The delta(13)C value of added DIC was -13.6parts per thousand, corresponding to the dissolution of CO2 with delta(13)C between -19.5 and -23.0parts per thousand Vienna Pee Dee Belemnite (VPDB). The observed difference between the measured and calculated equilibrium temperature of precipitation of bulk tufa barriers indicates that the higher the water temperature, the larger the error in the estimated temperature of precipitation. This implies that the climatic signals may be valid only in tufas precipitated at lower and relatively stable temperatures. The laminar crust comprising a continuous record of the last 40 years of precipitation shows a consistent trend of increasing delta(13)C and decreasing delta(18)O. The lack of covariation between delta(13)C and delta(18)O indicates that precipitation of calcite was not kinetically controlled for either of the elements. delta(13)C and delta(18)O of precipitates collected on different artificial substrates show that surface characteristics both of substrates and colonizing biota play an important role in C and O isotope fractionation during carbonate precipitation

Results 1 to 15 of 18
You probably didn't submit anything to search for