Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That tributary river is a smaller stream entering and contributing to the flow of a larger river [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for near-surface (Keyword) returned 31 results for the whole karstbase:
Showing 1 to 15 of 31
Subsidence and foundering of strata caused by the dissolution of Permian gypsum in the Ripon and Bedale areas, North Yorkshire, 1986, Cooper Ah,
Underground dissolution of thick gypsum beds in the Edlington Formation and Roxby Formation of the Zechstein sequence in North Yorkshire, England, has resulted in a 3 km-wide and 100 km-long belt of ground susceptible to foundering. Within this belt a large subsidence depression at Snape Mires, near Bedale, was largely filled with lacustrine deposits in the later part of the Late Devensian and during the Flandrian. South of Snape Mires the Nosterfield-Ripon-Bishop Monkton area has suffered about 40 episodes of subsidence in the past 150 years, and the presence of several hundred other subsidence hollows indicates considerable activity from the later part of the Devensian onwards. The linear and grid-like arrangement of these subsidence hollows indicates collapse at intersections in a joint-controlled cave system. Linear subsidence features at Snape Mires are also joint-controlled. The transition from anhydrite at depth to secondary gypsum near surface marks the down-dip limit of the subsidence-prone belt. Cavities are propagated upwards by roof collapse of caverns in the gypsum, leading to the formation of breccia pipes. Choking of the pipes can reduce the surface expression of the underground collapse, but the larger cavities are liable to produce pipes that reach the surface even at the eastern boundary of the 3 km-wide belt described. Further subsidence in the Ripon area is predicted and some suggestions for remedial measures are given

Groundwater chemistry and cation budgets of tropical karst outcrops, Peninsular Malaysia, I. Calcium and magnesium, 1989, Crowther J,
The discharge and chemical properties of 217 autogenic groundwaters were monitored over a 1-yr period in the tower karsts of central Selangor and the Kinta Valley, and in the Setul Boundary Range. Because of differences in soil PCO2, calcium concentrations are significantly higher in the Boundary Range (mean, 82.5 mg l-1) than in the tower karst terrain (44.6 mg l-1). Local differences in both source area PCO2 and amounts of secondary deposition underground cause marked intersite variability, particularly in the tower karst. Dilution occurs during flood peaks in certain conduit and cave stream waters. Generally, however, calcium correlates positively with discharge, since the amount of secondary deposition per unit volume of water decreases at higher flows. Magnesium concentrations and Mg:Ca Mg ratios of groundwaters are strongly influenced by bedrock composition, though bedrock heterogeneity and the kinetics and equilibria of carbonate dissolution reactions preclude extremely low or high Mg:Ca Mg values. Net chemical denudation rates range from 56.6 to 70.9 m3km2yr-1.The results are considered in relation to cation fluxes in surface runoff, soil throughflow and nutrient cycling. Preliminary calcium and magnesium budgets show that (1) dissolutional activity is largely confined to the near-surface zone; and (2) the annual uptake of calcium and magnesium by tropical limestone forests is similar in magnitude to the net solute output in groundwaters

A MIDDLE PROTEROZOIC PALEOKARST UNCONFORMITY AND ASSOCIATED SEDIMENTARY-ROCKS, ELU BASIN, NORTHWEST CANADA, 1991, Pelechaty S. M. , James N. P. , Kerans C. , Grotzinger J. P. ,
A major palaeokarst erosion surface is developed within the middle Proterozoic Elu Basin, northwestern Canada. This palaeokarst is named the sub-Kanuyak unconformity and truncates the Parry Bay Formation, a sequence of shallow-marine dolostones that were deposited within a north-facing carbonate platform under a semi-arid climate. The sub-Kanuyak unconformity exhibits up to 90 m of local relief, and also formed under semi-arid conditions when Parry Bay dolostones were subaerially exposed during a relative sea-level drop of about 180 m. Caves and various karren developed within the meteoric vadose and phreatic zones. Their geometry, size and orientation were largely controlled by northwest- and northeast-trending antecedent joints, bedding, and lithology. Near-surface caves later collapsed forming valleys, and intervening towers or walls, and plains. Minor terra rossa formed on top of highs. Karstification was most pronounced in southern parts of Bathurst Inlet but decreased northward, probably reflecting varying lengths of exposure time along a north-dipping slope. The Kanuyak Formation is up to 65 m thick, and partially covers the underlying palaeokarst. It consists of six lithofacies: (i) breccia formed during collapse of caves, as reworked collapse breccia and regolith; (ii) conglomerate representing gravel-dominated braided-fluvial deposits; (iii) sandstone deposited as braided-fluvial and storm-dominated lacustrine deposits; (iv) interbedded sandstone, siltstone and mudstone of sheet flood origin; (v) dolostones formed from dolocretes and quiet-water lacustrine deposits; and (vi) red-beds representing intertidal-marine mudflat deposits. Rivers flowed toward the northwest and northeast within karst valleys and caves; lakes were also situated within valleys; marine mudflat sediments completely cover the palaeokarst to the north. A regional correlation of the sub-Kanuyak unconformity with the intra-Greenhorn Lakes disconformity within the Coppermine homocline suggests that similar styles of karstification occurred over an extensive region. The Elu Basin palaeokarst, however, was developed more landward, and was exposed for a longer period of time than the Coppermine homocline palaeokarst

Evaporites, brines and base metals: What is an evaporite? Defining the rock matrix, 1996, Warren J. K. ,
This paper, the first of three reviews on the evaporite-base-metal association, defines the characteristic features of evaporites in surface and subsurface settings. An evaporite is a rock that was originally precipitated from a saturated surface or near-surface brine in hydrological systems driven by solar evaporation. Evaporite minerals, especially the sulfates such as anhydrite and gypsum, are commonly found near base-metal deposits. Primary evaporites are defined as those salts formed directly via solar evaporation of hypersaline waters at the earth's surface. They include beds of evaporitic carbonates (laminites, pisolites, tepees, stromatolites and other organic rich sediment), bottom nucleated salts (e.g. chevron halite and swallow-tail gypsum crusts), and mechanically reworked salts (such as rafts, cumulates, cross-bedded gypsarenites, turbidites, gypsolites and halolites). Secondary evaporites encompass the diagenetically altered evaporite salts, such as sabkha anhydrites, syndepositional halite and gypsum karst, anhydritic gypsum ghosts, and more enigmatic burial associations such as mosaic halite and limpid dolomite, and nodular anhydrite formed during deep burial. The latter group, the burial salts, were precipitated under the higher temperatures of burial and form subsurface cements and replacements often in a non-evaporite matrix. Typically they formed from subsurface brines derived by dissolution of an adjacent evaporitic bed. Because of their proximity to 'true' evaporite beds, most authors consider them a form of 'true' evaporite. Under the classification of this paper they are a burial form of secondary evaporites. Tertiary evaporites form in the subsurface from saturated brines created by partial bed dissolution during re-entry into the zone of active phreatic circulation. The process is often driven by basin uplift and erosion. They include fibrous halite and gypsum often in shale hosts, as well as alabastrine gypsum and porphyroblastic gypsum crystals in an anhydritic host. In addition to these 'true' evaporites, there is another group of salts composed of CaSO4 or halite. These are the hydrothermal salts. Hydrothermal salts, especially hydrothermal anhydrite, form by the subsurface cooling or mixing of CaSO4- saturated hydrothermal waters or by the ejection of hot hydrothermal water into a standing body of seawater or brine. Hydrothermal salts are poorly studied but often intimately intermixed with sulfides in areas of base-metal accumulations such as the Kuroko ores in Japan or the exhalative brine deeps in the Red Sea. In ancient sediments and metasediments, especially in hydrothermally influenced active rifts and compressional belts, the distinction of this group of salts from 'true' evaporites is difficult and at times impossible. After a discussion of hydrologies and 'the evaporite that was' in the second review, modes and associations of the hydrothermal salts will be discussed more fully in the third review

The use of alkalinity as a conservative tracer in a study of near-surface hydrologic change in tropical karst, 1999, Chandler Dg, Bisogni Jj,
Water shortages commonly increase in frequency following forest clearance on lauds overlying karst in the tropics. The mechanism underlying this hydrologic change is likely to depend on the land use which follows forest cover. To determine the flow paths which prevail for a progression of land uses common to the uplands of Leyte, Philippines, samples of interflow were collected during the rainy season and titrated to determine their alkalinities. The ratio of the measured alkalinity to the value predicted by equilibrium calculations for each sample was used as an indication of the contact time of the water with the limestone. The responses of the alkalinity saturation ratio and the runoff depth to increasing rainfall depth were used to substantiate the hypothesis that epikarst infilling and changing soil structure create throttles to percolation and infiltration. The forest site was found to generate interflow primarily as pipe how, with the infiltration and percolation throttles rarely exceeded. Similarly, infiltration was not: limiting for the slash/mulch Site, however, level of soil disturbance was adequate to initiate a throttle at the epikarst which increased the volume of interflow generated. The total percolation was similar for the plowed and slash/mulch sites; however, the interflow was decreased at the plowed site by reduced infiltration at the soil surface. The throttles to surface infiltration and epikarst percolation were even greater at the pasture sites, resulting in high runoff generation. However, comparatively greater infiltration was observed in the pasture having contour-hedgerows. (C) 1999 Elsevier Science B.V. All rights reserved

Origin and attributes of paleocave carbonate reservoirs, 1999, Loucks R. G.
Paleocave systems form an important class of carbonate reservoirs that are products of near-surface karst processes and later burial compaction and diagenesisOrigins of fractures, breccias, sediment fills and other features associated with paleocave reservoirs have been studied in modem and ancient cave systemsInformation about such cave systems can be used to reconstruct the general evolution of paleocave reservoirs and understand their associated scale, pore networks, and spatial complexities

Occurrence of cyanazine compounds in groundwater: Degradates more prevalent than the parent compound, 2001, Kolpin D. W. , Thurman E. M. , Linhart S. M. ,
A recently developed analytical method using liquid chromatography/mass spectrometry was used to investigate the occurrence of cyanazine and its degradates cyanazine acid (CAC), cyanazine amide (CAM), deethylcyanazine (DEC), and deethylcyanazine acid (DCAC) in groundwater. This research represents some of the earliest data on the occurrence of cyanazine degradates in groundwater. Although cyanazine was infrequently detected in the 64 wells across Iowa sampled in 1999, cyanazine degradates were commonly found during this study. The most frequently detected cyanazine compound was DCAC (32.8%) followed by CAC (29.7%), CAM (17.2%), DEC (3.1%), and cyanazine (3.1%). The frequency of detection for cyanazine or one or more of its degradates (CYTOT) was more than 12-fold over that of cyanazine alone (39.1% for CYTOT Versus 3.1% for cyanazine). Of the total measured concentration of cyanazine, only 0.2% was derived from its parent compound-with DCAC (74.1%) and CAC (18.4%) comprising 92.5% of this total. Thus, although DCAC and CAC had similar frequencies of detection, DCAC was generally present in higher concentrations. No concentrations of cyanazine compounds for this study exceeded water-quality criteria for the protection of human health. Only cyanazine, however, has such a criteria established. Nevertheless, because these cyanazine degradates are still chlorinated, they may have similar toxicity as their parent compound-similar to what has been found with the chlorinated degradates of atrazine. Thus, the results of this study documented that data on the degradates for cyanazine are critical for understanding its fate and transport in the hydrologic system. Furthermore, the prevalence of the chlorinated degradates of cyanazine found in groundwater suggests that to accurately determine the overall effect on human health and the environment from cyanazine its degradates should also be considered. In addition, because CYTOT was found in 57.6% of the samples collected from alluvia[ aquifers, about 2-5 times more frequently than the other major aquifer types (glacial drift, bedrock/karst, bedrock/nonkarst) under investigation, this finding has long-term implications for the occurrence of CYTOT in streams. It is anticipated that low-level concentrations of CYTOT will continue to be detected in streams for years after the use of cyanazine has terminated (scheduled for the year 2000 in the United States), primarily through its movement from groundwater into streams during base-flow conditions

Trace element (Th, U, Pb, REE) behaviour in a cryptokarstic halloysite and kaolinite deposit from Southern Belgium: importance of 'accessory' mineral formation for radioactive pollutant trapping, 2002, De Putter T, Andre L, Bernard A, Dupuis C, Jedwab J, Nicaise D, Perruchot A,
Hectometer wide cryptokarsts in Paleozoic limestone from Southern Belgium have been studied, to determine to what extent U, Th, Ph and rare earth elements (REE) have been mobilized in the karst sedimentary filling, during a Miocene weathering event. The weathering process resulted in the massive halloysite/kaolinite formation at the karst wall. As with most fossil systems, data on weathering fluid chemistry are lacking, hence it is difficult to quantify relevant parameters such as pH, Eh, and to address solution chemistry. However, on the basis of both field studies of more recent systems, and of geochemical modeling, it is proposed that moderately acid fluids percolated through a multi-layer sedimentary filling, in near-surface conditions and in a temperate/warm climate. Special attention is paid to the trace element immobilization/trapping processes, in newly crystallized REE phosphates, at the karst wall. Analytical methods used include major/trace element geochemistry (emission ICP, ICP-MS) and mineralogy (XRD, SEM, TEM, microprobe). The results suggest that both the sandy sediments that are in contact with the karst carbonate wall, and the carbonate wall itself acted as a kind of geochemical 'barrier'. Mineralization cells settled there, at the decimeter to meter scale. This results in sequential trace element (Pb, Th, REE, U) trapping, according to the affinity of these elements for the aqueous solution. At the end of the sequence, minute U-rich automorphic (Ce, Nd) monazite crystals (from 3 nm upwards) formed on kaolinite flakes. Though the analogy between the studied cryptokarst and planned surface-based repositories for low-level radioactive waste (LLW) in argillaceous context is far from complete, the results outlined here are relevant because they show that even in natural-i.e. intrinsically uncontrolled and unmonitored-systems, 'pollutant' radionuclide (U, Th, REE, Pb) migration paths are often limited in space. Various processes converge towards trapping of these elements, that are present in the radioactive waste. (C) 2002 Elsevier Science Ltd. All rights reserved

Quartzite dissolution: karst or pseudokarst?, 2003, Wray, R. A. L.

A wide range of landforms of great similarity to limestone karst is found on many of the world's quartz sandstones and quartzites. These landforms have often been dismissed as pseudokarst, but recent investigation shows that the dissolutional removal of silica, even quartz, under earth-surface conditions is a critical process in their formation. They must therefore be regarded as true karst features. Recognition of these genetically similar forms on quartzose rocks now demands the worldwide adoption of a less restrictive, process-based, karst definition. Direct evidence for this near-surface dissolutional weathering is not common. Examples of this process are reviewed here, along with further evidence for the dissolution of silica from within the quartz sandstones of the Sydney Basin in temperate south-eastern Australia. Some of the complex processes by which dissolution attacks the rock remain unclear. However the solubility, thermodynamics, fluid throughput and physical removal of detritus are all critical factors in the formation of what can only be termed karst on quartzites and quartz sandstone.


Sedimentologic, diagenetic and tectonic evolution of the Saint-Flavien gas reservoir at the structural front of the Quebec Appalachians, 2003, Bertrand R, Chagnon A, Malo M, Duchaine Y, Lavoie D, Savard Mm,
The Beekmantown Group (Lower Ordovician) of the Saint-Flavien reservoir has produced 162x106 m3 (5.7 bcf) of natural gas between 1980 and 1994. The conversion of the field into gas storage was initiated in 1992 and the pool became operational in 1998. Integration of structural and sedimentologic features, carbonate and organic matter petrography and geochemistry for 13 drill holes is used to define a tectonic-sedimentologic-diagenetic model for porosity evolution in these reservoir dolostones. The Beekmantown Group consists of numerous fifth-order shallowing-upward cycles 1.0 to 7.0 m thick (average of 2.4 m). Each cycle consists of a basal shale deposited during the initial flooding of the platform which was subsequently covered by a shoaling succession of subtidal and intertidal limestones to intertidal dolostones. Early dolomitization has produced intercrystalline porosity and preserved some moldic pores in the intertidal facies. Near surface, post-dolomite karstification has created vugs that were subsequently filled by early marine calcite fibrous cement based on the {delta}18O and {delta}13C ratios of calcite. Early burial elements consist of horizontal stylolites, pyrite and sphalerite. Late migrated bitumen was thermally altered or vaporized as native coke under deep burial conditions exceeding 240{degrees}C, partly due to overthrusting of Appalachian nappes. Under these conditions, breccias and fractures were generated and subsequently filled with K-feldspar, quartz, illite, and xenomorphic and poikilotopic calcite. The {delta}18O of the poikilotopic calcite and homogenization temperature of coeval fluid inclusions indicate formation under high temperatures (Th about 260{degrees}C). Horizontal shear zones and marcasite-rich vertical stylolites were produced during folding and thrusting. Dissolution has preferentially affected late fracture-filling calcite and generated most of the actual porosity during or soon after the Taconian Orogeny. The relationship between the occurrence of smectite and this type of porosity indicates the low temperature condition of this dissolution (T <100{degrees}C). Porosity in the Saint-Flavien reservoir has been mostly produced by fracture-controlled, late to post-Taconian dissolution of early to late calcite in the intertidal dolomitic slightly porous facies at the top of rhythmic cycles that compose the Beekmantown Group

Sulfate Cavity Filling in the Lower Werra Anhydrite (Zechstein, Permian), Zdrada Area, Northern Poland: Evidence for Early Diagenetic Evaporite Paleokarst Formed Under Sedimentary Cover, 2003, Hryniv Sofiya P. , Peryt Tadeusz Marek,
Paleokarst developed in sulfate deposits is common, and it is usually formed along the contact with the overlying permeable rocks or it is due to near-surface dissolution of bedded evaporites. In the Lower Werra Anhydrite (Zechstein) of northern Poland the paleokarst cavities are usually filled by bluish semitransparent anhydrite and more rarely by celestite, polyhalite, halite, and carbonate. In small cavities (a few centimeters across), a rim of rod-like anhydrite crystals arranged in narrow bundles occurs, and the inner part of the cavity is filled with a mosaic aggregate of short prismatic crystals of anhydrite and celestite as well as coarse irregular anhydrite. Celestite crystals and fan-shaped aggregates as well as spherulites of anhydrite are rare. In bigger cavities (some ten centimeters across), multiple zones of fibrous anhydrite are arranged in different directions in the middle part of the cavity fill. The innermost parts of large karst cavities remain hollow in some cases, with the cavity walls encrusted by coarse, well-developed crystals of anhydrite and celestite. The karst cavities in the Lower Werra Anhydrite developed in the subsurface by dissolution of CaSO4 strata in halite-rich intervals due to gypsum dehydration water. During gypsum dehydration, dissolution of that halite would have increased the sodium chloride content of the solution and thus the solubility of calcium sulfate. Dissolved calcium sulfate was removed from a leaching zone by diffusion and/or downward flow in interstitial space, and the minerals in karst cavities precipitated from the same solutions as those solutions became oversaturated because of decreases in NaCl concentration over time. This study suggests that karst in sulfate deposits can develop in the subsurface and without uplift and/or near-surface conditions

The application of Time-Lapse Microgravity for the Investigation and Monitoring of Subsidence at Northwich, Cheshire, 2003, Branston Mw, Styles P,
Peter Street is an area of terraced houses in Northwich suffering from subsidence, thought to be related to salt extraction in the 19th century. Microgravity and resistivity profiling have been used as non-invasive techniques to investigate the cause of this subsidence. Repeat (or time-lapse) microgravity has been used to assess the stability and evolution of the low-density areas. Time-lapse microgravity uses the characteristics of anomaly size and gradient to track the development of cavities as they propagate to the surface. It is possible to monitor the change in gravity with time and to model the increase in cavity volume and/or depth. A gravity low was found to be coincident with the area experiencing subsidence. Integratedmodelling techniques including Euler deconvolution, Cordell & Henderson inversion and GRAVMAG modelling have been used to investigate the depth and size of the body responsible for this anomaly. Resistivity imaging has been used to investigate the conductivity of the near surface and constrain the gravity models. Results from both techniques suggest that low density ground is now present at a depth of 3-4 m below the surface in the subsidence affected area. The use of time-lapse microgravity has shown that there has been an upwardmigration of a low-density zone at gravity anomaly C over the monitoring period

Concepts and models of dolomitization: a critical reappraisal, 2004, Machel Hans G. ,
Despite intensive research over more than 200 years, the origin of dolomite, the mineral and the rock, remains subject to considerable controversy. This is partly because some of the chemical and/or hydrological conditions of dolomite formation are poorly understood, and because petrographic and geochemical data commonly permit more than one genetic interpretation. This paper is a summary and critical appraisal of the state of the art in dolomite research, highlighting its major advances and controversies, especially over the last 20-25 years. The thermodynamic conditions of dolomite formation have been known quite well since the 1970s, and the latest experimental studies essentially confirm earlier results. The kinetics of dolomite formation are still relatively poorly understood, however. The role of sulphate as an inhibitor to dolomite formation has been overrated. Sulphate appears to be an inhibitor only in relatively low-sulphate aqueous solutions, and probably only indirectly. In sulphate-rich solutions it may actually promote dolomite formation. Mass-balance calculations show that large water/rock ratios are required for extensive dolomitization and the formation of massive dolostones. This constraint necessitates advection, which is why all models for the genesis of massive dolostones are essentially hydrological models. The exceptions are environments where carbonate muds or limestones can be dolomitized via diffusion of magnesium from seawater rather than by advection. Replacement of shallow-water limestones, the most common form of dolomitization, results in a series of distinctive textures that form in a sequential manner with progressive degrees of dolomitization, i.e. matrix-selective replacement, overdolomitization, formation of vugs and moulds, emplacement of up to 20 vol% calcium sulphate in the case of seawater dolomitization, formation of two dolomite populations, and -- in the case of advanced burial -- formation of saddle dolomite. In addition, dolomite dissolution, including karstification, is to be expected in cases of influx of formation waters that are dilute, acidic, or both. Many dolostones, especially at greater depths, have higher porosities than limestones, and this may be the result of several processes, i.e. mole-per-mole replacement, dissolution of unreplaced calcite as part of the dolomitization process, dissolution of dolomite due to acidification of the pore waters, fluid mixing (mischungskorrosion), and thermochemical sulphate reduction. There also are several processes that destroy porosity, most commonly dolomite and calcium sulphate cementation. These processes vary in importance from place to place. For this reason, generalizations about the porosity and permeability development of dolostones are difficult, and these parameters have to be investigated on a case-by-case basis. A wide range of geochemical methods may be used to characterize dolomites and dolostones, and to decipher their origin. The most widely used methods are the analysis and interpretation of stable isotopes (O, C), Sr isotopes, trace elements, and fluid inclusions. Under favourable circumstances some of these parameters can be used to determine the direction of fluid flow during dolomitization. The extent of recrystallization in dolomites and dolostones is much disputed, yet extremely important for geochemical interpretations. Dolomites that originally form very close to the surface and from evaporitic brines tend to recrystallize with time and during burial. Those dolomites that originally form at several hundred to a few thousand metres depth commonly show little or no evidence of recrystallization. Traditionally, dolomitization models in near-surface and shallow diagenetic settings are defined and/or based on water chemistry, but on hydrology in burial diagenetic settings. In this paper, however, the various dolomite models are placed into appropriate diagenetic settings. Penecontemporaneous dolomites form almost syndepositionally as a normal consequence of the geochemical conditions prevailing in the environment of deposition. There are many such settings, and most commonly they form only a few per cent of microcrystalline dolomite(s). Many, if not most, penecontemporaneous dolomites appear to have formed through the mediation of microbes. Virtually all volumetrically large, replacive dolostone bodies are post-depositional and formed during some degree of burial. The viability of the many models for dolomitization in such settings is variable. Massive dolomitization by freshwater-seawater mixing is a myth. Mixing zones tend to form caves without or, at best, with very small amounts of dolomite. The role of coastal mixing zones with respect to dolomitization may be that of a hydrological pump for seawater dolomitization. Reflux dolomitization, most commonly by mesohaline brines that originated from seawater evaporation, is capable of pervasively dolomitizing entire carbonate platforms. However, the extent of dolomitization varies strongly with the extent and duration of evaporation and flooding, and with the subsurface permeability distribution. Complete dolomitization of carbonate platforms appears possible only under favourable circumstances. Similarly, thermal convection in open half-cells (Kohout convection), most commonly by seawater or slightly modified seawater, can form massive dolostones under favourable circumstances, whereas thermal convection in closed cells cannot. Compaction flow cannot form massive dolostones, unless it is funnelled, which may be more common than generally recognized. Neither topography driven flow nor tectonically induced ( squeegee-type') flow is likely to form massive dolostones, except under unusual circumstances. Hydrothermal dolomitization may occur in a variety of subsurface diagenetic settings, but has been significantly overrated. It commonly forms massive dolostones that are localized around faults, but regional or basin-wide dolomitization is not hydrothermal. The regionally extensive dolostones of the Bahamas (Cenozoic), western Canada and Ireland (Palaeozoic), and Israel (Mesozoic) probably formed from seawater that was pumped' through these sequences by thermal convection, reflux, funnelled compaction, or a combination thereof. For such platform settings flushed with seawater, geochemical data and numerical modelling suggest that most dolomites form(ed) at temperatures around 50-80 {degrees}C commensurate with depths of 500 to a maximum of 2000 m. The resulting dolostones can be classified both as seawater dolomites and as burial dolomites. This ambiguity is a consequence of the historical evolution of dolomite research

Degradates provide insight to spatial and temporal trends of herbicides in ground water, 2004, Kolpin D. K. , Schnoebelen D. J. , Thurman E. M. ,
Since 1995, a network of municipal wells in Iowa, representing all major aquifer types (alluvial, bedrock/karst region, glacial drift, bedrock/nonkarst region), has been repeatedly sampled for a broad suite of herbicide compounds yielding one of the most comprehensive statewide databases of such compounds currently available in the United States. This dataset is ideal for documenting the insight that herbicide degradates provide to the spatial and temporal distribution of herbicides in ground water. During 2001, 86 municipal wells in Iowa were sampled and analyzed for 21 herbicide parent compounds and 24 herbicide degradates. The frequency of detection increased from 17% when only herbicide parent compounds were considered to 53% when both herbicide parents and degradates were considered. Thus, the transport of herbicide compounds to ground water is substantially underestimated when herbicide degradates are not considered. A significant difference in the results among the major aquifer types was apparent only when both herbicide parent compounds and their degradates were considered. In addition, including herbicide degradates greatly improved the statistical relation to the age of the water being sampled. When herbicide parent compounds are considered, only 40% of the wells lacking a herbicide detection could be explained by the age of the water predating herbicide use. However, when herbicide degradates were also considered, 80% of the ground water samples lacking a detection could be explained by the age of the water predating herbicide use. Finally, a temporal pattern in alachlor concentrations in ground water could only be identified when alachlor degradates were considered

Mineralogical and Stable Isotope Studies of Kaolin Deposits: Shallow Epithermal Systems of Western Sardinia, Italy, 2005, Simeone R. , Dilles J. H. , Padalino G. , Palomba M. ,
Large kaolin deposits hosted by Miocene silicic pyroclastic rocks in northwestern Sardinia represent hydrothermal alteration formed within 200 m of the Miocene paleosurface. Boiling hydrothermal fluids ascended steeply dipping faults that are enveloped by altered rock. The broadly stratiform kaolin deposits constitute advanced argillic alteration that was produced in a steam-heated zone near the paleosurface overlying the deeper hydrothermal systems. The deeper zones represent two distinct types of epithermal systems: weakly acidic (inferred low-sulfidation) systems at Tresnuraghes and acidic (high-sulfidation) systems at Romana. Tresnuraghes is characterized at depth by chalcedony {} quartz {} barite veins within a 50-m-wide zone of K-feldspar-quartz-illite alteration and overlying local occurrences of chalcedony sinter, which define the paleosurface. Kaolin deposits near the paleosurface are characterized by zonation outward and downward from an inner shallow zone of kaolinite 1T-opal {} dickite {} alunite (<20-{micro}m-diam grains) to an outer deeper kaolinite 1M-montmorillonite-cristobalite. This zonation indicates formation by descending acidic fluids. The system evolved from ascending weakly acidic or neutral fluids that boiled to produce H2S-rich vapor, which condensed and oxidized within the near-surface vadose zone to form steam-heated acid-sulfate waters and kaolin alteration. At Romana, veins at depth contain chalcedony or quartz and minor pyrite and are enclosed in up to 20-m-wide zones of kaolinite 1T-quartz alteration. Near hydrothermal vents along the paleosurface, chalcedonic silica is enclosed within a zone of kaolinite 1T-alunite (<50-{micro}m-diam grains)-quartz-opal {} dickite {} cristobalite. Kaolin quarries near the paleosurface display outward and downward zoning to kaolinite 1T-opal {} cristobalite and then to montmorillonite-kaolinite 1T {} opal, consistent with formation by descending low pH fluid. The siliceous and advanced argillic alteration along steep conduits formed from acidic ascending magmatic-hydrothermal fluids, whereas the near-surface kaolin formed from steam-heated meteoric waters. Alteration mineral assemblages and stable isotope data provide evidence of the temperature and source of hydrothermal fluids. Barite from Tresnuraghes (average{delta} 18O = 17.1{per thousand},{delta} 34S = 18.8{per thousand}), one alunite sample from Romana ({delta}18O = 12.0{per thousand},{delta} D = -3{per thousand},{delta} 34S = 16.7{per thousand}), and quartz from both localities ({delta}18O = 15.9-22.0{per thousand}) formed in hydrothermal feeders. Source fluids were likely mixtures of meteoric water and minor magmatic fluid, similar to other epithermal systems. Kaolinite-dickite minerals from the kaolin deposits ({delta}18O = 16.6-21.4{per thousand},{delta} D = -43 to -53{per thousand}) formed from steam-heated meteoric water having{delta} D = - 20 per mil, consistent with the presence of anomalous Hg and fine-grained Na- and Fe-poor alunite. The laterally extensive kaolin deposits in Sardinia, and possibly similar deposits elsewhere in the world, appear to represent the uppermost parts of large hydrothermal systems that may be prospects for gold at depth

Results 1 to 15 of 31
You probably didn't submit anything to search for