Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That roughness coefficient is a coefficient that describes roughness of a channel bed [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for needles (Keyword) returned 11 results for the whole karstbase:
A Growth Rate for Cave Gypsum Needles, 1977, Peck, Stewart B.

Les aiguilles de gypse du Verneau (Doubs), 1986, Couturaud, A.
THE GYPSUM NEEDLES OF THE VERNEAU SYSTEM (DOUBS) - These crystals are both exceptionally long (up to 225mm) and very well preserved. They were discovered on the floor of an old choked passage close to a large gallery and a collector. They appear to have grown during a flooded period where the Triassic or paleokarstic gypsum was re-dissolved.

Des aiguilles de gypse dans les grottes algriennes, 1987, Collignon, B.
Gypsum needles in algerian caves

A Model of Structure and Genesis for the Gypsum Nest, Found in the Geophysicheskaya Cave (Kugitangtou Mountains,Turkmenistan), 1997, Maltsev, V. A.
A description, and a possible structure and genetic mechanism for a gypsum nest, a very rare speleothem consisting of gypsum needles growing from a drying clay massif, are considered. Because of conservation concerns, theoretical modeling is the only acceptable method for studying this complicated and delicate feature. The model suggested considers the nest as a screw-dislocated spherocrystal, with its sub-individuals separated by corrosion at some initial stage, and having separate growth at later stages.

Depositional Facies and Aqueous-Solid Geochemistry of Travertine-Depositing Hot Springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.), 2000, Fouke Bw, Farmer Jd, Des Marais Dj, Pratt L, Sturchio Nc, Burns Pc, Discipulo Mk,
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73{degrees}C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72{degrees}C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62{degrees}C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite 'ice sheets', calcified bubbles, and aggregates of aragonite needles ('fuzzy dumbbells') precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54{degrees}C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30{degrees}C) is composed of calcite spherules and calcite 'feather' crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding {delta}13C. Travertine {delta}13C and {delta}18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature ([~]50-73{degrees}C) depositional facies. Conversely, travertine precipitating in the lower-temperature (<[~]50{degrees}C) depositional facies exhibits {delta}13C and {delta}18O values that are as much as 4{per thousand} less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide-oxidizing microbes, preliminary {delta}34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry

Aragonite-Calcite Relationships in Speleothems (Grotte De Clamouse, France): Environment, Fabrics, and Carbonate Geochemistry, 2002, Frisia S, Borsato A, Fairchild Ij, Mcdermott F, Selmo Em,
In Grotte de Clamouse (France), aragonite forms in a variety of crystal habits whose properties reflect the conditions of formation. Prolonged degassing and evaporation yield needle aragonite, which is more enriched in 18O and 13C than aragonite ray crystals, which form near isotopic equilibrium. At present, aragonite ray crystals form at the tops of stalagmites at very low discharge (0.00035 ml/ min), and when fluid Mg/Ca ratio is > 1.1. Temperature and evaporation do not seem to have a significant role in their formation. The presence of aragonite in stalagmites should be indicative of a decrease in drip rate related to either dry climate conditions or local hydrology. Fossil aragonite was in part replaced by calcite in a time frame < 1.0 ka, possibly through the combined effects of dissolution of aragonite, and precipitation of calcite, which preferentially nucleated on calcite cements that had previously formed between aragonite rays. Commonly, the replacement phase inherited the textural and chemical characteristics of the precursor aragonite prisms and needles (and in particular the {delta}13C signal and U content), and preserved aragonite relicts (up to 16 weight %). The isotope signal of different aragonite habits may reflect conditions of formation rather than climate parameters. The real extent of aragonite-to-calcite transformation may be underestimated when replacement calcite inherits both textural and chemical properties of the precursor

Formation of seasonal ice bodies and associated cryogenic carbonates in Caverne de lOurs, Que bec, Canada: Kinetic isotope effects and pseudo-biogenic crystal structures, 2009, Lacelle D. , Lauriol B. , And Clark I. D.
This study examines the kinetics of formation of seasonal cave ice formations (stalagmites, stalactites, hoar, curtain, and floor ice) and the associated cryogenic calcite powders in Caverne de lOurs (QC, Canada), a shallow, thermally-responsive cave. The seasonal ice formations, which either formed by the: (1) freezing of dripping water (ice stalagmite and stalactite); (2) freezing of stagnant or slow moving water (floor ice and curtain ice) and; (3) condensation of water vapor (hoar ice), all (except floor ice) showed kinetic isotope effects associated with the rapid freezing of calcium bicarbonate water. This was made evident in the dD, d18 O and d (deuterium excess) compositions of the formed ice where they plot along a kinetic freezing line. The cryogenic calcite powders, which are found on the surface of the seasonal ice formations, also show kinetic isotope effects. Their d13 C and d18 O values are among the highest measured in cold-climate carbonates and are caused by the rapid rate of freezing, which results in strong C-O disequilibrium between the water, dissolved C species in the water, and precipitating calcite. Although the cryogenic calcite precipitated as powders, diverse crystal habits were observed under scanning electron microscope, which included rhombs, aggregated rhombs, spheres, needles, and aggregated structures. The rhomb crystal habits were observed in samples stored and observed at room temperature, whereas the sphere and needle structures were observed in the samples kept and observed under cryogenic conditions. Considering that the formation of cryogenic calcite is purely abiotic (freezing of calcium bicarbonate water), the presence of spherical structures, commonly associated with biotic processes, might represent vaterite, a polymorph of calcite stable only at low temperatures. It is therefore suggested that care should be taken before suggesting biological origin to calcite precipitates based solely on crystal habits because they might represent pseudo-biogenic structures formed through abiotic processes.

Cottonballs, a unique subaqeous moonmilk and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska, 2009, Curry M. D. , Boston P. J. , Spilde M. N. , Baichtal J. F. , Campbell A. R.
The Tongass National Forest is known for its world-class karst features and contains the largest concentration of dissolutional caves in Alaska. Within these karst systems exist unusual and possibly unique formations exhibiting possible biological origin or influence. Cataract Cave is an example of such a system. This cave hosts a unique depositional setting in which so-called cottonballs line two permanent pools. The cottonballs are a calcitic deposit heavily entwined within a mass of microbial filaments. They are juxtaposed with extensive subaerial calcitic moonmilk wall deposit of a more conventional nature but of an extraordinary thickness and abundance. Both the cottonballs and moonmilk are composed of microcrystalline aggregates (0.20 wt.%) compared to the cottonballs (0.12 wt.%). However, the cottonballs are dominated by monocrystalline needles, whereas the moonmilk is mainly composed of polycrystalline needles. The microbial environments of both displayed similar total microbial cell counts; however, culturable microbial counts varied between the deposits and among the various media. For both, in situ cultures and isolates inoculated in a calcium salt medium produced calcium carbonate mineralization within biofilms. Geochemical variations existed between the deposits. Moonmilk displayed a slightly higher abundance of organic carbon (0.20 wt%) compared to the cottonballs (0.12 wt%). Stable isotopic analysis revealed that the moonmilk (?13C = -1.6) was isotopically heavier compared to the cottonballs (?13C = -8.1) but both are lighter than the host rock (?13C = +1.1). However, the organic carbon ?13C values of both deposits were similar (?13C = -27.4 and 26.7) and isotopically lighter compared to other overlying surface organic carbon sources. Due to the similarities between the deposits, we infer that both the cottonballs and moonmilk are subject to a set of related processes that could collectively be accommodated by the term moonmilk. Thus, the cottonball pool formation can be characterized as a type of subaqueous moonmilk. The differences observed between the moonmilk and cottonballs may be largely attributable to the changes in the depositional environment, namely in air or water.

Cottonballs, a unique subaqeous moonmilk and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska, 2009, Curry M. D. , Boston P. J. , Spilde. M. N. , Baichtal J. F. , Campbell A. R.

The Tongass National Forest is known for its world-class karst features and contains the largest concentration of dissolutional caves in Alaska. Within these karst systems exist unusual and possibly unique formations exhibiting possible biological origin or influence. Cataract Cave is an example of such a system. This cave hosts a unique depositional setting in which so-called “cottonballs� line two permanent pools. The cottonballs are a calcitic deposit heavily entwined within a mass of microbial filaments. They are juxtaposed with extensive subaerial calcitic moonmilk wall deposit of a more conventional nature but of an extraordinary thickness and abundance. Both the cottonballs and moonmilk are composed of microcrystalline aggregates (0.20 wt.%) compared to the cottonballs (0.12 wt.%). However, the cottonballs are dominated by monocrystalline needles, whereas the moonmilk is mainly composed of polycrystalline needles. The microbial environments of both displayed similar total microbial cell counts; however, culturable microbial counts varied between the deposits and among the various media. For both, in situ cultures and isolates inoculated in a calcium salt medium produced calcium carbonate mineralization within biofilms. Geochemical variations existed between the deposits. Moonmilk displayed a slightly higher abundance of organic carbon (0.20 wt%) compared to the cottonballs (0.12 wt%). Stable isotopic analysis revealed that the moonmilk (δ13C = -1.6‰) was isotopically heavier compared to the cottonballs (δ13C = -8.1‰) but both are lighter than the host rock (δ13C = +1.1‰). However, the organic carbon δ13C values of both deposits were similar (δ13C = -27.4 and –26.7‰) and isotopically lighter compared to other overlying surface organic carbon sources. Due to the similarities between the deposits, we infer that both the cottonballs and moonmilk are subject to a set of related processes that could collectively be accommodated by the term “moonmilk�. Thus, the cottonball pool formation can be characterized as a type of subaqueous moonmilk. The differences observed between the moonmilk and cottonballs may be largely attributable to the changes in the depositional environment, namely in air or water.


Speleothems in the dry Cave Parts of the Gamslcher-Kolowrat Cave, Untersberg near Salzburg (Austria), 2011, Bieniok Anna, Zagler Georg, Brendel Uwe, Neubauer Franz

New, remarkably dry parts of the Gamslöcher-Kolowrat Cave at 728 to 853 m depth have been explored in the Untersberg near Salzburg in Austria. This region is called the Desert, its greatest cavity is called the White Hall. The new cave part is characterized by various white speleothems. The predominant ones are snow-like calcite powder with an extremely low density, and fine gypsum needles. Gypsum also occurs in the form of balls stuck to vertical walls. In addition, fluorescent hydromagnesite crusts, Mg5(CO3)4(OH)2·4H2O, as well as the sodium sulfate mineral mirabilite were identified in this part of the cave. Mirabilite and gypsum needles differ from the gypsum balls in their isotopic sulfur signature (δ34S of -16.9‰ and -18.4‰ vs. +2.9‰). The unusually low sulfur isotopic compositional values are tentatively explained by a source of bacteriogenetic sulfur from sulfides.


Structural and host rock controls on the distribution, morphology and mineralogy of speleothems in the Castanar Cave (Spain), 2011, Alonsozarza A. M. , Martinperez A. , Martingarcia R. , Gilpena I. , Melendez A. , Martinezflores E. , Hellstrom J. , Munozbarco P.

The Castanar Cave (central western Spain) formed in mixed carbonate-siliciclastic rocks of Neoproterozoic age. The host rock is finely bedded and shows a complex network of folds and fractures, with a prevalent N150E strike. This structure controlled the development and the maze pattern of the cave, as well as its main water routes. The cave formed more than 350 ka ago as the result of both the dissolution of interbedded carbonates and weathering of siliciclastic beds, which also promoted collapse of the overlying host rock. At present it is a totally vadose hypergenic cave, but its initial development could have been phreatic. The cave's speleothems vary widely in their morphology and mineralogy. In general, massive speleothems (stalactites, stalagmites, flowstones, etc.) are associated with the main fractures of the cave and bedding planes. These discontinuities offer a fairly continuous water supply. Other branching, fibrous, mostly aragonite speleothems, commonly occur in the steeper cave walls and were produced by capillary seepage or drip water. Detailed petrographical and isotope analyses indicate that both aragonite and calcite precipitated as primary minerals in the cave waters. Primary calcite precipitated in waters of low magnesium content, whereas aragonite precipitated from magnesium-rich waters. Differences in isotope values for calcite (-5.2‰ for ?18O and -9.6‰ for ?13C) and aragonite (?18O of -4.5‰ and ?13C of -3.5‰ ) can be explained by the fact that the more unstable mineral (aragonite) tends to incorporate the heavier C isotope to stabilize its structure or that aragonite precipitates in heavier waters. Changes in the water supply and the chemistry and instability of aragonite caused: (1) inversion of aragonite to calcite, which led to the transformation of aragonite needles into coarse calcite mosaics, (2) micritization, which appears as films or crusts of powdery, opaque calcite, and (3) dissolution. Dolomite, huntite, magnesite and sepiolite were identified within moonmilk deposits and crusts. Moonmilk occurs as a soft, white powder deposit on different types of speleothems, but mostly on aragonite formations. Huntite and magnesite formed as primary minerals, whereas dolomite arose via the replacement of both huntite and aragonite. Owing to its variety of speleothems and location in an area of scarce karstic features, the Castanar Cave was declared a Natural Monument in 1997 and is presently the target of a protection and research programme. Although the main products formed in the cave and their processes are relatively well known, further radiometric data are needed to better constrain the timing of these processes. For example, it is difficult to understand why some aragonite speleothems around 350 ka old have not yet given way to calcite, which indicates that the environmental setting of the cave is still not fully understood. 


Results 1 to 11 of 11
You probably didn't submit anything to search for