Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That ferrito zone is zone of iron oxide accumulation in soil under humid climate conditions [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for nitrate concentrations (Keyword) returned 12 results for the whole karstbase:
NITRATE CONCENTRATIONS IN KARST SPRINGS IN AN EXTENSIVELY GRAZED AREA, 1995, Boyer Dg, Pasquarell Gc,
The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are located on karat terrain. Nitrate concentrations were measured in several karat springs in Southeastern West Virginia in order to determine the impact of animal agriculture on nitrate pollution of the karst ground water system. Karst basins with 79, 51, 16, and 0 percent agriculture had mean nitrate concentrations of 15.8, 12.2, 2.7, and 0.4 mg/l, respectively. A strong linear relationship between nitrate concentration and percent agricultural land was shown. Median nitrate concentration increased about 0.19 mg l(-1) per percent increase in agricultural land. Weather patterns were also found to significantly affect the median nitrate concentrations and the temporal variability of those concentrations. Lower nitrate concentrations and lower temporal variability were observed during a severe drought period. It was concluded that agriculture was significantly affecting nitrate concentrations in the karst aquifer. Best management practices may be one way to protect the ground water resource

Agricultural land use effects on nitrate concentrations in a mature karst aquifer, 1996, Boyer Dg, Pasquarell Gc,
The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are on karst terrain. Nitrate concentrations were measured in cave streams draining two primary land management areas. The first area was pasture serving a beef cow-calf operation. The second area was a dairy. Nitrate-N concentrations were highest in cave streams draining the daily and a cave stream draining an area of pasture where cattle congregate for shade and water. The dairy contributed about 60 to 70 percent of the nitrogen load increase in the study section of the cave system. It was concluded that agriculture was significantly affecting nitrate concentrations in the karst aquifer. Best management practices may be one way to protect the ground water resource

Agricultural land use impacts on bacterial water quality in a karst groundwater aquifer, 1999, Boyer Dg, Pasquarell Gc,
The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are on karst terrain. The purpose of this study was to compare fecal bacteria densities in karst groundwater impacted by two primary agricultural land uses in central Appalachia. Fecal bacteria densities were measured in cave streams draining two primary land management areas. The first area was pasture serving a beef cow-calf operation. The second area was a dairy. Neither area had best management practices in place for controlling animal wastes. Median fecal coliform and fecal streptococcus densities were highest in cave streams draining the dairy. Median fecal coliform densities in the daily-impacted stream were greater than 4,000 CFU/100 ml and the median fecal coliform densities in the pasture-impacted streams were less than TO CFU/100 ml. Median fecal streptococcus densities in the same streams were greater than 2,000 CFU/100 ml and 32 CFU/100 ml, respectively. A second dairy, with best management practices for control of animal and milkhouse waste, did not appear to be contributing significant amounts of fecal bacteria to the karst aquifer. It was concluded that agriculture was affecting bacterial densities in the karat aquifer. New management practices specifically designed to protect karst groundwater resources may be one way to protect the groundwater resource

Groundwater in the Celtic regions, 2000, Robins N. S. , Misstear B. D. R. ,
The Celtic regions of Britain and Ireland have a complex and diverse geology which supports a range of regionally and locally important bedrock aquifers and unconsolidated Quaternary aquifers. In bedrock, aquifer units are often small and groundwater flow paths short and largely reliant on fracture flow. Groundwater has fulfilled an important social role throughout history, and is now enjoying renewed interest. Groundwater quality is generally favourable and suitable for drinking with minimal treatment. However, many wells are vulnerable to microbiological and chemical pollutants from point sources such as farmyards and septic tank systems, and nitrate concentrations from diffuse agricultural sources are causing concern in certain areas. Contamination by rising minewaters in abandoned coalfields and in the vicinity of abandoned metal mines is also a problem in some of the Celtic lands

Timescales for nitrate contamination of spring waters, northern Florida, USA, 2001, Katz B. G. , Bohlke J. K. , Hornsby H. D. ,
Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium ((3) H), and tritium/helium-3 (H-3/He-3) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997-1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20 2 years from CFC- 12, CFC- 113, H-3, and He-3. with evidence of partial CFC- 11 degradation. The EMM gave a reasonable fit to CFC- 113, CFC- 12. and H-3 data, but did not reproduce the observed He-3 concentrations or H-3/He-3 ratios, nor did a combination PFM-EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had H-3 concentrations not much different front modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC- 113, with evidence of partial CFC- 11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10-20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwance County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio of artificial fertilizer/manure whereas in Lafayette County, spring nitrate trends and nitrogen isotope data were consistent with a more monotonic increase in fertilizer input and relatively low overall ratio of artificial fertilizer/manure. The combined results of this study indicate that the nitrate concentrations of springs in the Suwannee River basin have responded to increased nitrogen loads from various sources in the watersheds over the last few decades, however, the responses have been subdued and delayed because the average residence time of groundwater discharging from springs are in the order of decades. (C) 2001 Published by Elsevier Science B.V

Sources of nitrate contamination and age of water in large karstic springs of Florida, 2004, Katz B. G. ,
In response to concerns about the steady increase in nitrate concentrations over the past several decades in many of Florida's first magnitude spring waters (discharge greater than or equal to2.8 m(3)/s), multiple isotopic and other chemical tracers were analyzed in water samples from 12 large springs to assess sources and timescales of nitrate contamination. Nitrate-N concentrations in spring waters ranged from 0.50 to 4.2 mg/L, and delta(15)N values of nitrate in spring waters ranged from 2.6 to 7.9 per mil. Most delta(15)N values were below 6 per mil indicating that inorganic fertilizers were the dominant source of nitrogen in these waters. Apparent ages of groundwater discharging from springs ranged from 5 to about 35-years, based on multi-tracer analyses (CFC-12, CFC-113, SF6, H-3/He-3) and a piston flow assumption; however, apparent tracer ages generally were not concordant. The most reliable spring-water ages appear to be based on tritium and He-3 data, because concentrations of CFCs and SF6 in several spring waters were much higher than would be expected from equilibration with modern atmospheric concentrations. Data for all tracers were most consistent with output curves for exponential and binary mixing models that represent mixtures of water in the Upper Floridan aquifer recharged since the early 1960s. Given that groundwater transit times are on the order of decades and are related to the prolonged input of nitrogen from multiple sources to the aquifer, nitrate could persist in groundwater that flows toward springs for several decades due to slow transport of solutes through the aquifer matrix

Characterization of ground water flow from spring discharge in a crystalline rock environment, 2004, Gentry Wm, Burbey Tj,
Recent investigations describing the hydrogeology of the Blue Ridge Province of Virginia suggest the occurrence of multiple aquifers and flow paths that may be responsible for the variable flow behavior of springs and seeps appearing throughout the region. Deep, confined aquifers associated with ubiquitous faults and shallow, variably confined saprolite aquifers may contribute water to spring outlets resulting in significantly different quantities of discharge and water quality. Multiple analyses are required to adequately identify the flow paths to springs. In this investigation, hydrograph analyses, surface electrical resistivity surveys, aquifer tests, and nitrate concentrations are used in conjunction with previously reported analyses from borehole logs and age dating of ground water to identify two distinct flow paths. Results indicate that base flow occurs from a deep fault zone aquifer and such discharge can be maintained even during prolonged periods of drought, while increased discharge identified on hydrograph peaks suggests the occurrence of rapid flow through the saprolite aquifer within a radius of about 25 meters of the spring orifice. Springflow hydrograph analysis is suitable for rapid characterization of flow paths leading to spring outlets. Rapid characterization is important for evaluation of potential water quality problems arising from contamination of shallow and deep aquifers and for evaluation of water resource susceptibility to drought. The techniques evaluated here are suitable for use in other locations in fractured crystalline rock environments

An inexpensive, automatic, submersible water sampler, 2004, Martin J. B. , Thomas R. G. , Hartl K. M. ,
Currently available water samplers are manually actuated, can only be deployed onshore, limiting their use to small or developed water bodies, or are designed for deployment in the deep sea, making them large and expensive. The automatic submersible water sampler described here is small, lightweight, actuated by a microprocessor, and inexpensively and easily constructed. The sampler consists of a pressure case, sample containers constructed of 10 spring-loaded 60 mL syringes connected to solenoid valves, and electronics to control opening and closing of the solenoid valves. Vacuum in the syringes keeps the springs compressed while the solenoid valves are closed. When a valve opens, the spring expands and draws water past a screen and/or filter into the syringe. Once the syringe is filled, the solenoid valve closes, storing the sample. More than one syringe can be opened simultaneously if more than 60 mL are required. Preservatives can be added to the syringe prior to deployment. Some environments where it could be used include karst aquifers, lakes, large rivers, and estuaries

Intrinsic vulnerability assessment of the south-eastern Murge (Apulia, southern Italy), 2004, Marsico A. , Giuliano G. , Pennetta L. , Vurro M. ,
Maps of areas with different vulnerability degrees are an integral part of environmental protection and management policies. It is difficult to assess the intrinsic vulnerability of karst areas since the stage and type of karst structure development and its related underground discharge behaviour are not easy to determine. Therefore, some improvements, which take into account dolines, eaves and superficial lineament arrangement, have been integrated into the SIN-TACS R5 method and applied to a karst area of the southeastern Murge (Apulia, southern Italy). The proposed approach integrates the SINTACS model giving more weight to morphological and structural data; in particular the following parameters have been modified: depth to groundwater, effective infiltration action, unsaturated zone attenuation capacity and soil/overburden attenuation capacity. Effective hydro-geological and impacting situations are also arranged using superficial lineaments and karst density. In order to verify the reliability of the modified procedure, a comparison is made with the original SINTACS R5 index evaluated in the same area. The results of both SINTACS index maps are compared with karst and structural features identified in the area and with groundwater nitrate concentrations recorded in wells. The best fitting SINTACS map is then overlaid by the layout of potential pollution centres providing a complete map of the pollution risk in the area

Using Multiple Chemical Indicators to Assess Sources of Nitrate and Age of Groundwater in a Karstic Spring Basin, 2005, Katz Brian, Copeland Rick, Greenhalgh Tom, Ceryak Ron, Zwanka Warren,
Human health and ecological concerns have arisen due to a steady increase in nitrate-N concentrations during the past 40 years in Fannin Springs (0.3-4.7 mg/L), a regional discharge point with an average flow of >2.8 m3/second (>100 ft3/second) for water from the karstic Upper Floridan aquifer (UFA). Multiple chemical indicators (major dissolved species, 15N and 18O of nitrate, dissolved gases, 78 pesticides and degradates, and 67 organic compounds typically found in domestic and industrial wastewater) and transient tracers (3H/3He, chlorofluorocarbons [CFCs], sulfur hexafluoride [SF6]) were analyzed in water samples from nine wells along three transects and in spring water to assess groundwater age and potential contaminant sources. Land use is predominantly agricultural (52 percent) and forest (31 percent) in the 320 km2 (124 mi2) spring basin, which was delineated from a potentiometric-surface map of the UFA using high-resolution water-level data. Nitrate-N concentrations were highly variable in the oxic UFA and ranged from <0.02 to 4.7 mg/L. {delta}15N-NO3 values (3.4-9.9 per mil) indicated that nitrate contamination originated from inorganic sources (synthetic fertilizer) and organic sources (manure spreading or waste disposal). Higher nitrate concentrations and the younger age of spring water relative to water from upgradient wells indicate better communication with N sources at the surface. Apparent ages of groundwater correlated positively with well depth (P < 0.05) and were younger in water from wells nearer to the spring (<8 years) compared with other wells (10-50 years). Most transient tracer concentrations were consistent with binary mixing curves representing mixtures of water recharged during the past 10 years and older water (recharged before 1940). Young water mixing fractions ranged from 0.07 to 0.90. Trace levels of herbicides found in groundwater and spring water were indicative of applications for vegetative control in agricultural and other land-use types

Spatial and temporal changes in the structure of groundwater nitrate concentration time series (1935-1999) as demonstrated by autoregressive modelling, 2005, Jones A. L. , Smart P. L. ,
Autoregressive modelling is used to investigate the internal structure of long-term (1935-1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1-2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1-2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14-22 months for individual springs, with positive autocorrelation at 19-20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought. (C) 2005 Elsevier B.V. All rights reserved

Water quality improvement program effectiveness for carbonate aquifers in grazed land watersheds, 2005, Boyer Dg,
Water quality indicators of two agriculturally impacted karst areas in southeastern West Virginia were studied to determine the water quality effects of grazing agriculture and water quality trends following initiation of water quality improvement programs. Both areas are tributaries of the Greenbrier River and received funding for best management practices under the President's Initiative for Water Quality and then under the Environmental Quality Incentives Program (EQIP). After 11 years of study there was little evidence to suggest that water quality improved in one area. Three and a half years of study in the other area showed little evidence of consistent water quality improvement under EQIP. Lack of consistent water quality improvement at the catchment scale does not imply that the voluntary programs were failures. Increased livestock numbers as a result of successful changes in forage management practices may have overridden water quality improvements achieved through best management practices. Practices that target well defined contributing areas significantly impacting aquifer water quality might be one way to improve water quality at catchment scales in karst basins. For example, a significant decrease in fecal coliform concentrations was observed in subterranean drainage from one targeted sinkhole after dairy cattle were permanently excluded from the sinkhole

Results 1 to 12 of 12
You probably didn't submit anything to search for