Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That firn is compacted granular snow [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for northern calcareous alps (Keyword) returned 15 results for the whole karstbase:
Showing 1 to 15 of 15
DIAGENESIS OF AN UPPER TRIASSIC REEF COMPLEX, WILDE-KIRCHE, NORTHERN CALCAREOUS ALPS, AUSTRIA, 1994, Satterley A. K. , Marshall J. D. , Fairchild I. J. ,
The Wilde Kirche reef complex (Early-Late Rhaetian) grew as an isolated carbonate structure within the shallow Kossen Basin. At the Triassic/Jurassic boundary a single brief(c. 10-50 ka) period of subaerial exposure occurred. The preserved karst profile (70 m thick) displays a vadose zone, enhanced dissolution at a possible palaeo-watertable (5-15m below the exposure surface), and a freshwater phreatic zone. Karst porosity was predominantly biomouldic. primary cavities and biomoulds were enlarged and interconnected in the freshwater phreatic zone; cavity networks developed preferentially in patch reef facies. Resubmegence of the reef complex allowed minor modification of the palaeokarst surface by sea floor dissolution and Fe-Mn crust deposition on a sediment-starved passive margin. Fibrous calcite (FC), radiaxial fibrous calcite (RFC) and fascicular optic calcite (FOC) cements preserved as low Mg calcite (LMC) are abundant in primary and karst dissolution cavities. FC cement is restricted to primary porosity, particularly as a synsedimentary cement at the windward reef margin. FC, RFC and FOC contain microdolomite inclusions and show patchy non-/bright cathodoluminescence. delta(18)O values ofnon-luminescent portions (interpreted as near original) are -1.16 to -1.82 parts per thousand (close to the inferred delta(18)O of calcite precipitated from Late Triassic sea water). delta(13)C values are constant ( to .2 parts per thousand). These observations suggest FC, RFC and FOC were originally marine high Mg calcite (HMC) precipitates, and that the bulk of porosity occlusion occurred not in the karst environment but in the marine environment during and after marine transgression. The HMC to LMC transition may have occurred in contact with meteoric water only in the case of FC cement. The most altered (brightly luminescent) portions of RFC/FOC cements yield delta(18)O = -2.44 to -5.8 parts per thousand, suggesting HMC to LMC alteration at up to 34 degrees C, in the shallow burial environment at depths of 180-250 m. Abundant equant cements with delta(18)O = -4.1 to -7.1 parts per thousand show crisp, uniform or zoned dull luminescence. They are interpreted as unaltered cements precipitated at 33-36 degrees C at 200-290 m burial depth, from marine-derived fluids under a slightly enhanced geothermal gradient. Fluids carrying the equant cements may have induced the HMC to LMC transition in the fibrous cements

The Dachstein paleosurface and the Augenstein Formation in the Northern Calcareous Alps - a mosaic stone in the geomorphological evolution of the Eastern Alps, 2001, Frisch W, Kuhlemann J, Dunkl I, Szekely B,
The central and eastern areas of the Northern Calcareous Alps (NCA) are characterized by remnants of the Dachstein paleosurface, which formed in Late Eocene (?) to Early Oligocene time and is preserved with limited modification on elevated karst plateaus. In Oligocene time, the Dachstein paleosurface subsided and was sealed by the Augenstein Formation, a terrestrial succession of conglomerates and sandstones, which are only preserved in small remnants on the plateaus, some in an autochthonous position. Thermochronological data suggest a maximum thickness of the Augenstein Formation of >1.3 km, possibly >2 km. The age of the Augenstein Formation is constrained by the overall geological situation as Early Oligocene to earliest Miocene. Fission track age data support an Early Oligocene age of the basal parts of the formation. The source area of the Augenstein Formation consisted predominantly of weakly metamorphic Paleozoic terrains (Greywacke Zone and equivalents) as well as the Late Carboniferous to Scythian siliciclastic base of the NCA to the south of the depositional area. To the west, the Augenstein Formation interfingered with the Tertiary deposits of the Inntal. Sedimentation of the Augenstein Formation was terminated in Early Miocene time in the course of the orogenic collapse of the Eastern Alps. The Augenstein sediments were eroded and redeposited in the foreland Molasse zone. From Pannonian times (similar to 10 Ma) on, the NCA and the denuded Dachstein surface experienced uplift in several pulses. The Dachstein paleosurface has been preserved in areas, in which thick limestone sequences allowed subsurface erosion by cave formation and thus prevented major surface erosion

Dachstein-Altflche, Augenstein-Formation und Hhlenentwicklung - die Geschichte der letzten 35 Millionen Jahre in den zentralen Nrdlichen Kalkalpen., 2002, Frisch W. , Kuhlemann J. , Dunkl I. , Szekely B. , Vennemann T. , Rettenbacher A.
The landscape of the central Northern Calcareous Alps (NCA) is largely determined by the celebrate elevated karst plateaus, which represent relics of the Dachstein paleosurface and can be followed as far as the eastern margin of the NCA. The Dachstein paleosurface formed in late Eocene to early Oligocene times as a karstic hilly landscape. It was modified by later erosional processes to a limited extent only and is preserved as such in the karst plateaus. In the Oligocene, the paleosurface subsided and was sealed by the Augenstein Formation, a terrestrial sequence of conglomerates and sandstones, which are only preserved in small remnants on the plateaus. The poorly and contradictingly defined terms Rax landscape" and Augenstein landscape" are not used any more. From the overall geological situation, the age of the Augenstein Formation can be inferred as Lower Oligocene to early Lower Miocene. Fission track dating on zircon support the Lower Oligocene age of the basal Augenstein sediments (only these are preserved). Their source area was situated in the south and mainly occupied by weakly metamorphosed Paleozoic sequences (Graywacke Zone and its equivalents) and the latest Carboniferous to Lower Triassic siliciclastic base of the NCA. To the west, the Augenstein Formation interfingered with the Tertiary sediments of the Lower Inn Valley. Thermal modeling of fission track data from apatite, which is contained in pebbles as an accessory phase, suggest that the Augenstein Formation attained thicknesses of locally 1.3 km, possibly even more than 2 km. Augenstein sedimentation probably ended in Early Miocene times with the onset of lateral tectonic extrusion in the Eastern Alps, which caused lowering of the relief in the source area and created a new, fault-bounded river network. In the following period, the Augenstein sediments were eroded and redeposited in the foreland molasse basin. From Pannonian times (ca. 10 Ma) on, the central and eastern NCA, and therefore also the Dachstein paleosurface, experienced uplift in pulses. The paleosurface remained preserved in those areas, where thick limestone sequences enabled subsurface erosion in cave systems and considerably reduced surface erosion. Augenstein sediments became washed into the widespread cave systems of the plateau-topped limestone massifs. The arrangement of the caves in three horizons shows that uplift of the NCA occurred in pulses separated from periods of tectonic quiescence. In our model of the evolution of the NCA since the late Eocene, the highest cave system, the surface-near ruin cave system, was probably formed during formation of the Dachstein paleosurface. The largest system, the giant cave system, formed in Upper Miocene times, i.e., in the early stage of the final uplift period of the NCA. The youngest and lowest system, the source cave system, formed in Pliocene to Quaternary times. We aimed to date material from the giant cave system by radiometric methods. U/Pb dating on speleothems from the Mammut cave (Dachstein) and the Eisriesenwelt (Tennengebirge) gave no formation age because of the low U contents; however, the isotope ratios allow to infer that the speleothems formed in pre-Pleistocene time. Quartz pebbles from the Augenstein Formation, washed into the caves before the formation of the speleothems, were analyzer for cosmogenic beryllium and aluminum isotopes in order to date the time of redeposition. The isotope contents, however, did no yield a sufficiently strong signal. Oxygen and carbon isotope ratios were determined on the Eisriesenwelt speleothem in order to receive information on climatic changes during speleothem growth. A 260 mm long core from the outer zone of the speleothem shower limited variation for the temperatures of the seeping rainwater, which caused the speleothems to form. This indicates moderate climate and thus, again, pre-Pleistocene formation of the speleothems. All these results are in accord with the supposed Upper Miocene formation age of the giant cave system. Displacement of a speleothem along a shear plane and normal faults visible on the plateaus by the offset of the actual surface testify young, partly Quaternary tectonics, which affected the NCA.[ausfhrliche Darstellung, geol. Krtchen, Farbbilder, ganzes Heft.]

Dachstein-Altflche, Augenstein-Formation und Hhlenentwicklung - die Geschichte der letzten 35 Millionen Jahre in den zentralen Nrdlichen Kalkalpen, 2002, Frisch W. , Kuhlemann J. , Dunkl I. , Szekely B. , Vennemann T. , Rettenbacher A.
The landscape of the central Northern Calcareous Alps (NCA) is largely determined by the celebrate elevated karst plateaus, which represent relics of the Dachstein paleosurface and can be followed as far as the eastern margin of the NCA. The Dachstein paleosurface formed in late Eocene to early Oligocene times as a karstic hilly landscape. It was modified by later erosional processes to a limited extent only and is preserved as such in the karst plateaus. In the Oligocene, the paleosurface subsided and was sealed by the Augenstein Formation, a terrestrial sequence of conglomerates and sandstones, which are only preserved in small remnants on the plateaus. The poorly and contradictingly defined terms Rax landscape" and Augenstein landscape" are not used any more. From the overall geological situation, the age of the Augenstein Formation can be inferred as Lower Oligocene to early Lower Miocene. Fission track dating on zircon support the Lower Oligocene age of the basal Augenstein sediments (only these are preserved). Their source area was situated in the south and mainly occupied by weakly metamorphosed Paleozoic sequences (Graywacke Zone and its equivalents) and the latest Carboniferous to Lower Triassic siliciclastic base of the NCA. To the west, the Augenstein Formation interfingered with the Tertiary sediments of the Lower Inn Valley. Thermal modeling of fission track data from apatite, which is contained in pebbles as an accessory phase, suggest that the Augenstein Formation attained thicknesses of locally 1.3 km, possibly even more than 2 km. Augenstein sedimentation probably ended in Early Miocene times with the onset of lateral tectonic extrusion in the Eastern Alps, which caused lowering of the relief in the source area and created a new, fault-bounded river network. In the following period, the Augenstein sediments were eroded and redeposited in the foreland molasse basin. From Pannonian times (ca. 10 Ma) on, the central and eastern NCA, and therefore also the Dachstein paleosurface, experienced uplift in pulses. The paleosurface remained preserved in those areas, where thick limestone sequences enabled subsurface erosion in cave systems and considerably reduced surface erosion. Augenstein sediments became washed into the widespread cave systems of the plateau-topped limestone massifs. The arrangement of the caves in three horizons shows that uplift of the NCA occurred in pulses separated from periods of tectonic quiescence. In our model of the evolution of the NCA since the late Eocene, the highest cave system, the surface-near ruin cave system, was probably formed during formation of the Dachstein paleosurface. The largest system, the giant cave system, formed in Upper Miocene times, i.e., in the early stage of the final uplift period of the NCA. The youngest and lowest system, the source cave system, formed in Pliocene to Quaternary times. We aimed to date material from the giant cave system by radiometric methods. U/Pb dating on speleothems from the Mammut cave (Dachstein) and the Eisriesenwelt (Tennengebirge) gave no formation age because of the low U contents; however, the isotope ratios allow to infer that the speleothems formed in pre-Pleistocene time. Quartz pebbles from the Augenstein Formation, washed into the caves before the formation of the speleothems, were analyzer for cosmogenic beryllium and aluminum isotopes in order to date the time of redeposition. The isotope contents, however, did no yield a sufficiently strong signal. Oxygen and carbon isotope ratios were determined on the Eisriesenwelt speleothem in order to receive information on climatic changes during speleothem growth. A 260 mm long core from the outer zone of the speleothem shower limited variation for the temperatures of the seeping rainwater, which caused the speleothems to form. This indicates moderate climate and thus, again, pre-Pleistocene formation of the speleothems. All these results are in accord with the supposed Upper Miocene formation age of the giant cave system. Displacement of a speleothem along a shear plane and normal faults visible on the plateaus by the offset of the actual surface testify young, partly Quaternary tectonics, which affected the NCA.

Soil types and eolian dust in high-mountainous karst of the Northern Calcareous Alps (Zugspitzplatt, Wetterstein Mountains, Germany), 2003, Kufmann C. ,
This, study deals with the soil formation on pure limestone in the high-mountainous karst of Wetterstein Mountains (Northern Calcareous Alps). The study area in detail covers the alpine (2000 to 2350 in) and the subnivale zone (2350 to 2600 in) of Zugspitzplatt, a tertiary paleosurface situated next to the highest summit of Germany (Zugspitze 2963 in). The formation of autochthonous soils is determined by the following parameters: uniform geology and geochemistry of Triassic limestone (CaCO3 MgCO3 greater than or equal to 98%), variable substrata (solid rock, debris, local moraine), hypsometric pattern of vegetation modified by microclimate and aspect, variety of micro-environments in karst relief. In the subnivale zone, only leptosols (lithic, skeletic) and regosols (calcaric, humic) occur, whereas in the alpine zone different stages of folic histosols and rendzic leptosols prevail due to the diversity of vegetation. The purity of limestone prevents a distinct contribution of residues to soil formation. Instead of expected A-B-C profiles, the residues are mixed with organic matter of folic horizons (O-OB-C). Only in karst depressions or on local moraines small Bt horizons (2 to 5 cm) occur. They mark a developed stage of folic histosol (O-OB-Bt-C) representing the climax of autochthonous mineral soil genesis in the study area. Special features are brown deposits (mean thickness 30 cm) covering large parts of the alpine zone. On the basis of mineralogical (X-ray diffraction, heavy minerals) and pedological data (grain size, soil chemistry), eolian origin is indicated. The resulting soils are classified as loess loam-like cambisols (Ah-Bw-2(Bt)-2C) and are related to late glacial loess deposition (Egesen-Stade of Younger Dryas). The abundance of mica and silt in the surface layers and the grain size distribution of snow dust samples prove that dust influx by southerly winds is still continuing. The major sources for both late glacial and present-day dust are magmatic and metamorphic rock formations of the Central Alps. Additionally, local dust transport from adjacent outcrops of Jurassic and Lower Cretaceous sediments is evident. (C) 2003 Elsevier Science B.V. All rights reserved

Spelologische Charakterisierung und Analyse des Hochschwab-Plateaus, Steiermark., 2004, Plan, L.
The Hochschwab is one of the major karst massifs of the Northern Calcareous Alps (NCA), situated in the north of the Austrian province of Styria and provides freshwater for the city of Vienna. Karstmorphological mapping of 44 km of its plateau brought the discovery of 770 new caves. Together with formerly recorded caves and possible caves detected on aerial photographs a total of 1284, mainly vertical objects are integrated into a GIS. In combination with additional digital datasets, statistical analyses are performed considering the spatial distribution of cave density as well as the dependence on altitude and lithology. Beside this, the most important caves within the study area are characterised. The investigated caves are mainly pits and vertical canyons which developed in the vadose zone. Phreatic cave levels associated with former valley floors, which are common in the NCA, do not exist in the Hochschwab. A few caves of phreatic origin developed above aquitard geological units. The average cave density in the investigation area is 24 objects/km. In glacially strongly overprinted areas it increases to more than 400 caves per km. Remarkable facts of the dependence on lithology are that the limestone of the Dachstein Formation does not show an increased cave density. In contrast, the diverse facies of the limestones of the Wetterstein Formation exhibit major differences.[Hundsbodenschacht (1744/11), G'hacktsteinschacht (1744/14), Furtowischacht (1744/310), Sargdeckelschacht (1744/363), TremmelSchacht-413 (1744/413), EBNK-Schacht (1744/426), Schrgschacht (1744/442), Hirschgrubenhhle (1744/450), Melkbodeneishhle (1745/1), Eis-Schacht-39 (1745/39), Spaltenschacht (1745/43)]

Spelologische Charakterisierung und Analyse des Hochschwab-Plateaus, Steiermark, 2004, Plan, L.
The Hochschwab is one of the major karst massifs of the Northern Calcareous Alps (NCA), situated in the north of the Austrian province of Styria and provides freshwater for the city of Vienna. Karstmorphological mapping of 44 km of its plateau brought the discovery of 770 new caves. Together with formerly recorded caves and possible caves detected on aerial photographs a total of 1284, mainly vertical objects are integrated into a GIS. In combination with additional digital datasets, statistical analyses are performed considering the spatial distribution of cave density as well as the dependence on altitude and lithology. Beside this, the most important caves within the study area are characterised. The investigated caves are mainly pits and vertical canyons which developed in the vadose zone. Phreatic cave levels associated with former valley floors, which are common in the NCA, do not exist in the Hochschwab. A few caves of phreatic origin developed above aquitard geological units. The average cave density in the investigation area is 24 objects/km. In glacially strongly overprinted areas it increases to more than 400 caves per km. Remarkable facts of the dependence on lithology are that the limestone of the Dachstein Formation does not show an increased cave density. In contrast, the diverse facies of the limestones of the Wetterstein Formation exhibit major differences.

Constraints on alpine speleogenesis from cave morphology - A case study from the eastern Totes Gebirge (Northern Calcareous Alps, Austria), 2009, Plan Lukas, Filipponi Marco, Behm Michael, Seebacherd Robert, Jeutter Peter

The Totes Gebirge is the largest karst massif in the Northern Calcareous Alps (NCA). This paper focuses on the eastern part, where two major multiphase alpine cave systems (Burgunderschacht Cave System and DÖF–Sonnenleiter Cave System) are described with respect to morphology, hydrology, and sediments. The caves consist of Upper Miocene galleries of (epi)phreatic genesis and younger vadose canyon-shaft systems. Morphometrical analyses were used to determine the relevance of (1) cave levels (horizontal accumulations of galleries), (2) slightly inclined palaeo water tables of speleogenetic phases, (3) initial fissures, and (4) inception horizons on the development of the cave systems. (Epi)phreatic cave conduits developed preferentially along vertical faults and along only a restricted number of bedding planes, which conforms to the inception horizon hypothesis. For at least one of the systems, a development under epiphreatic conditions is certain and a hydrological behaviour in the “filling overflow manner” is likely.

Observations in further major cave systems in the Totes Gebirge identify palaeo water tables of speleogenetic phases that show inclinations of 1.5° ± 1°. Analyses of cave levels reveal distinct peaks for each cave but it is hardly possible to correlate these elevation levels between caves of different parts of the karst massif. Therefore, we conclude that cave levels (strictly horizontal) indicate speleogenetic phases or palaeo water tables respectively, but they cannot be correlated with palaeo base levels or on regional scale. An exact correlation between cave development and palaeo base levels at the surface is only possible with inclined palaeo water tables of speleogenetic phases.

For the Totes Gebirge, the inclination directions of the speleogenetic phases imply that palaeo drainage was radial and recharge was autogenic, which is in contrast to observations from other plateaus in the NCA. Differences in fracture properties seem to be the reason for the development of divergent types, according to the Four State Model. A simplified model for cave genesis and surface development in this area since the Upper Miocene is presented.


HYPOGENE CAVES IN AUSTRIA, 2009, Plan L. , Spotl C. , Pavuza R. , Dublyansky Y.

Among the ca. 14,000 registered caves of Austria few have been attributed to hypogene speleogenesis. This paper provides an overview of hypogene caves in Austria. A few dozen examples are known around the Vienna Basin. Some of these caves, such as Eisensteinhhle and Nasser Schacht, display a thermally anomalous microclimate and are associated with thermal springs. Other caves are inactive, but their morphology and deposits are suggestive of a hypogene origin. Preliminary morphologic observations suggest sulfuric speleogenesis for Stephanshhle near Bad Deutsch Altenburg. In the Northern Calcareous Alps, which host the majority of caves of Austria, only very few have previously been identi?ed as hypogene (e.g., Mrchenhhle, Wasserhhle), but the number of such caves is likely to increase in the near future. Also, “normal” (epigenetic) cave systems sometimes show morphological evidence suggestive of a hypogene origin, but conclusive proof is lacking. The only Austrian cave where a sulfuric acid speleogenesis is well documented is Kraushhle. In marbles of the Central Alps lukewarm and thermal springs are present and cavities of likely hypogene origin were encountered during tunnel construction near Lend. In a nearby cave, Entrische Kirche, isotopic evidence of marble alteration by warm paleowaters was recently identi?ed. Extensive calcite deposits are also known from nearby Stegbachgraben, and ongoing isotopic and fluid-inclusion studies strongly suggest hypogene water-rock interaction at lukewarm (<40°C) temperatures there. A few caves in the Southern Calcareous Alps also show morphological evidence of a hypogene origin (e.g. Kozakhhle), which is U/Th-dated to older than ca. 144,000 years. CO2 -rich springs discharge nearby.


Karst morphology and groundwater vulnerability of high alpine karst plateaus, 2009, Plan L. , Decker K. , Faber R. , Wagreich M. , Grasemann B.

High alpine karst plateaus are recharge areas for major drinking water resources in the Alps and many other regions. Well-established methods for the vulnerability mapping of groundwater to contamination have not been applied to such areas yet. The paper characterises this karst type and shows that two common vulnerability assessment methods (COP and PI) classify most of the areas with high vulnerability classes. In the test site on the Hochschwab plateau (Northern Calcareous Alps, Austria), overlying layers are mostly absent, not protective or even enhance point recharge, where they have aquiclude character. The COP method classifies 82% of the area as highly or extremely vulnerable. The resulting maps are reasonable, but do not differentiate vulnerabilities to the extent that the results can be used for protective measures. An extension for the upper end of the vulnerability scale is presented that allows identifying ultra vulnerable areas. The proposed enhancement of the conventional approach points out that infiltration conditions are of key importance for vulnerability. The method accounts for karst genetical and hydrologic processes using qualitative and quantitative properties of karst depressions and sinking streams including parameters calculated from digital elevations models. The method is tested on the Hochschwab plateau where 1.7% of the area is delineated as ultra vulnerable. This differentiation could not be reached by the COP and PI methods. The resulting vulnerability map highlights spots of maximum vulnerability and the combination with a hazard map enables protective measures for a manageable area and number of sites.


Karst micrometeorology of two caves on the Loser Plateau, Northern Calcareous Alps, Austria - Initial results, 2009, Curtis, A.
An ongoing micrometeorological program was initiated in the summer of 2007 by the Cambridge Austrian Cave Science Expedition (CASCE) with the intention of characterizing the heat flux into the diurnal heterothermic zone of two caves on the Loser plateau in the Totes Gebirge mountains, Rundreisehhle and Steinbrckenhhle. The relative importance of the diffusive, advective (airflow), and latent (condensation and evaporation) components of that flux were examined. Three weeks of intensive monitoring resulted in 105,500 temperature data points in Rundreisehhle and 64,000 in Steinbrckenhhle, as well as surface meteorological data. The long penetration distance observed for the diurnal temperature cycle into the caves implies an entrance heat flux several orders of magnitude greater than could be explained by diffusive processes alone, suggesting dominance of advective and / or latent processes. Up to 228.6 litres of condensation was present in the Steinbrckenhhle entrance areas at peak periods (0.34 l m-2 of cave wall), representing a potential maximum heat flux to the affected walls of 555.6 kJ day-1.

Palotraun? Der Wissenschaftsdisput um die Entstehung der Dachstein-Mammuthhle, 2010, Plan L. , Herrmann E.
At the beginning of the 20th century, after the Dachstein-Mammuthhle had been discovered, Hermann Bock proposed his wellknown hypothesis (Hhlenflusstheorie) that an enormous underground river with a discharge of 1500 to 3000 m/s crossed the Northern Calcareous Alps in the Tertiary. The showpiece of this model was the so-called Palotraun, a large gallery in the Dachstein- Mammuthhle, whose origin was attributed to mechanical erosion by this palaeo- river. His hypothesis formed the core of a long-standing scientific dispute among speleologists and other scientists in Austria about the origin of the Dachstein-Mammuthhle in general and the Palotraun in particular. In the first part of this article the diverging hypotheses are presented. The second part aims at interpreting the style of this multiphase scientific dispute in which Bock (and later on his epigones) managed to defend at least some parts of his hypothesis, while the opposing parties developed ever new hypotheses to disprove the Hhlenflusstheorie. In our opinion the dispute finally led to a dead end and was essentially ignored by the international speleological community.

Geomorphologische Untersuchung und genetische Interpretation der Dachstein- Mammuthhle (sterreich), 2010, Plan L. , Xaver A.
The speleogenesis of Dachstein-Mammuthhle, the third-longest cave system in the Northern Calcareous Alps, has been discussed controversially in the past. Using morphologic mapping and morphometric data of the central parts of the cave in combination with modern speleogenetic models a re-evaluation of its development is attempted. The geometry of the cave and several small-scale features (e.g., scallops, karren, ceiling meanders), which date back to the early history of the cave formation, lead to the following interpretion: old phreatic parts (galleries, mazes, and some pits) developed under epiphreatic conditions during flood events, followed by younger, vadose canyon-shaft-systems. Scallops and sedimentary structures indicate a general westward flow direction. Sediments played an important role during the formation of the profiles, i.e. the profiles expanded upward (paragenesis) because the floor of the galleries was sealed by sediments, and only part of the cross section, as it can be seen today after removal of these sediments, was occupied by water. This is relevant for calculations of the palaeodischarge from mean scallop lengths and cross-section areas. Paragenesis can only be ruled out for the origin of the keyhole profile of the so-called Canyon (near the Westeingang) and the palaeodischarge was estimated to 16 m/s. This, however, was probably only a fraction of the total discharge of this system as several additional large galleries occur at the same cave level. The former catchment area was probably located south of todays Northern Calcareous Alps

A new karren feature: hummocky karren, 2012, Plan Lukas, Renetzeder Christa, Pavuza Rudolf, Krner Wilfried

Karren are small-scale landforms on karst surfaces and many types have been described so far. Here we present an apparently new feature which was found on the Hochschwab karst massive in the Northern Calcareous Alps of Austria. So far only few outcrops each having less than 1 m² within a very restricted area have been found. Morphometric analysis reveals that the karren consist of a randomly distributed, dispersed assemblage of small hummocks and depressions in between. The mean distance between neighbouring hummocks is 4 to 5 cm and the mean height is 0.85 cm. Longitudinal sections are gently sinuous. The occurrences are delimited by thin soil cover with grassy vegetation. The karst features continue below that vegetation cover. Therefore, it is clear that the karren have formed subcutaneously. Corroded fissures where water could infiltrate into the epikarst are absent. The bedrock lithology is Middle Triassic limestone of the Wetterstein Formation in lagoonal facies. Geological structures do not govern the feature. The surface is not a bedding plane and small joints and fractures do not govern the arrangement of the hummocks. Thin section analysis regarding rock texture and dolomite components show that there is no compositional difference between hummocks and depressions. Geochemical analyses show that the limestone is very pure with a very low content of Magnesia. Slightly higher Magnesia contents at the hummock surfaces are significant. The data obtained so far only indicate that some dissolution mechanism but not any rock property governs the irregular array. As there exist no descriptions of comparable features in literature, the name “hummocky karren” is suggested for that type of karren landform.


Der Hhlenname Ofen, 2012, Hasitschka, J.
Since the Middle Ages washed out kolks in canyons, cave entrances, rock recesses or overhanging rock walls mainly situated in the Northern Calcareous Alps have been called fen. They have in common that they look like an ancient vaulted oven to the hollow mould of which they are compared. It is difficult to track topographic-etymologic traces because the concrete names like in Ziegelofenhhle (brickoven cave) are mixed with abstract, figurative meanings like in Gamsofen (chamois oven). The term Ofen got one further meaning by introducing the speleological term Backofentypus (oven type cave). About 130 Austrian caves with the name of Ofen are analyzed topographically and etymologically, from lime kilns (Kalkfen) in the Prealps up to the mountain peaks of Salz- or Rotofen. The question why the name Ofen in modern language is rarely used or even no longer understood is finally dealt with.

Results 1 to 15 of 15
You probably didn't submit anything to search for