Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That troglophile is 1. "cave lover." an animal that can complete its life cycle in caves, but may also do so in suitable habitats outside caves [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for northern florida (Keyword) returned 8 results for the whole karstbase:
Origin of the epeirogenic uplift of Pliocene-Pleistocene beach ridges in Florida and development of the Florida karst, 1984, Opdyke Neil D. , Spangler D. P. , Smith D. L. , Jones D. S. , Lindquist R. C. ,
Marine fossils of Pleistocene age are known to occur in beach ridges near the border of northern Florida and southern Georgia at elevations of between 42 and 49 m above mean sea level. No evidence exists for a massive melt-off of glacial ice, which would be required to raise sea level to these elevations. Florida, therefore, must have been uplifted epeirogenically during the Pleistocene. Measurement of dissolved solids in Florida's springs demonstrates that the karst area is losing a minimum of 1.2 X 10 6 m 3 /yr of limestone through spring flow, the equivalent of 1 m of surficial limestone every 38,000 yr. This loss has led to an isostatic uplift of the north-central part of the Florida peninsula of at least 36 m during the Pleistocene and Holocene, which agrees with observed elevations of marine terraces.--Modified journal abstract

CHEMICAL EVOLUTION OF GROUNDWATER NEAR A SINKHOLE LAKE, NORTHERN FLORIDA .1. FLOW PATTERNS, AGE OF GROUNDWATER, AND INFLUENCE OF LAKE WATER LEAKAGE, 1995, Katz B. G. , Lee T. M. , Plummer L. N. , Busenberg E. ,
Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 mid for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions

The combined use of Sr-87/Sr-86 and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst, 1996, Katz B. G. , Bullen T. D. ,
The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The Sr-87/Sr-86 ratio along with the stable isotopes, D, O-18, and C-13 were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the Sr-87/Sr-86 ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2 generally increase with depth, and higher concentrations of Sr2 in water from the Upper Floridan aquifer (20-35 mu g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [delta(13)C = -1.6 permil (parts per thousand)] is also indicated by an enriched delta(13)C(DIC) (-8.8 to -11.4 parts per thousand) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (delta(13)C(DIC) < -16 parts per thousand). Groundwater downgradient from Lake Barco was enriched in O-18 and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the Sr-87/Sr-86 ratio of groundwater and aquifer material become less radiogenic and the Sr2 concentrations generally increase with depth. However, Sr2 concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2 concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2 from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the Sr-87/Sr-86 ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three distinct hydrogeologic units displays considerable variability in Sr concentration and isotopic composition, the dominant processes associated with the mixing of lakewater leakage with groundwater, as well as the effects of mineral-water interaction, can be ascertained by integrating the use of stable and radiogenic isotopic measurements of groundwater, lakewater, and aquifer minerals

Interactions between ground water and surface water in the Suwannee River Basin, Florida, 1997, Katz B. G. , Dehan R. S. , Hirten J. J. , Catches J. S. ,
Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where around water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River

Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream, 1998, Katz B. G. , Catches J. S. , Bullen T. D. , Michel R. L. ,
The Little River, an ephemeral stream that drains a watershed of approximately ss km(2) in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques, Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta O-18 and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) Sr-87/Sr-86 ratios, and lower concentrations of Rn-222, silica, and alkalinity compared to low-how conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers O-18, deuterium, tannic acid, silica, Rn-222, and Sr-87/Sr-86. On the basis of mass-balance modeling during steady-state how conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter. (C) 1998 Elsevier Science B.V. All rights reserved

Timescales for nitrate contamination of spring waters, northern Florida, USA., 2001, Katz B. G. , Bohlke J. K. , Hornsby H. D.

Timescales for nitrate contamination of spring waters, northern Florida, USA, 2001, Katz B. G. , Bohlke J. K. , Hornsby H. D. ,
Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium ((3) H), and tritium/helium-3 (H-3/He-3) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997-1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20 2 years from CFC- 12, CFC- 113, H-3, and He-3. with evidence of partial CFC- 11 degradation. The EMM gave a reasonable fit to CFC- 113, CFC- 12. and H-3 data, but did not reproduce the observed He-3 concentrations or H-3/He-3 ratios, nor did a combination PFM-EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had H-3 concentrations not much different front modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC- 113, with evidence of partial CFC- 11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10-20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwance County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio of artificial fertilizer/manure whereas in Lafayette County, spring nitrate trends and nitrogen isotope data were consistent with a more monotonic increase in fertilizer input and relatively low overall ratio of artificial fertilizer/manure. The combined results of this study indicate that the nitrate concentrations of springs in the Suwannee River basin have responded to increased nitrogen loads from various sources in the watersheds over the last few decades, however, the responses have been subdued and delayed because the average residence time of groundwater discharging from springs are in the order of decades. (C) 2001 Published by Elsevier Science B.V

Isotopic Investigations of Cave Drip Waters and Precipitation in Central and Northern Florida, USA, Msc.Thesis, 2007, Pacegraczyk, Kali J

A temperature, drip rate, and stable isotopic study (δ18O and δD) was undertaken in three caves in central and northern Florida. Both surface and cave temperatures were collected, as were precipitation, cave drip water and drip rates. All data were collected on a weekly basis to investigate the isotopic relationships between precipitation and cave drip waters. The objective of this study was to provide a calibration of the oxygen and hydrogen isotopic values in precipitation and cave drip water for future paleoclimate work in the Florida peninsula.Based on the steady annual cave temperature and high relative humidity (95% or above), all three caves are suitable locations for paleoclimate work. A spike in the cave drip rate is seen following precipitation events at both Legend and Jennings Caves. A lag time of 52 days between the date of the storm event and the increase in drip rate was found at Legend Cave.


Legend and Jennings Caves in central Florida show a relationship between the amount of precipitation and the δ18O values. The isotopic values in precipitation were more depleted after a large precipitation event, suggesting the amount effect is influential in this location. At Florida Caverns State Park tourist cave in northern Florida, the association between 18O and precipitation was weak while a relationship between 18O and temperature may be present; here the seasonal effect or latitude effect may be significant.
The monthly mean isotopic values of the drip waters were found to approximate those of the precipitation. The steady isotopic values of the drip water are due to a homogenization of water infiltrating into the epikarst and mixing with water already present in the karst storage. This finding is important for future paleoclimate research in the Florida peninsula. An important assumption in paleoclimate work is that the value of δ18O in calcite at the time of precipitation represents the mean annual δ18O of precipitation at the time of deposition. The ultimate objectives of this research were to assess the isotopic relationship between precipitation and cave drip waters in order to interpret paleoclimate data sets. Although the data were limited to a single year, it appears that a sufficient isotopic signal exists in central-north Florida precipitation and drip water to apply for paleoclimate studies.


Results 1 to 8 of 8
You probably didn't submit anything to search for