Search in KarstBase
The article presents a new sedimentary-climatic model for explaining autochthonous clastic sediment in the Upper Pleistocene site, Divje babe I, Slovenia. The sediment analysed here was deposited during Oxygen Isotope Stages 1, 3 and 5 (OIS, OIS 3, OIS 5). The stress is on precipitation, which we explained on the basis of the quantity of authigenic structural aggregates in the sediment. We supported the results with quantitative analysis of clasts with etched surface, which represent corrosion of the cave ceiling, and etched bones, which represent corrosion on the cave ground. We also analysed the relation between climate and cave bears, and Neanderthals and climate, on the basis of mass fossil remains and finds of artefacts. All analyses were made on the basis of three-dimensional sampling, i.e., in horizontal and vertical directions. We sampled 65 profiles over an area of 65 m2. Each profile had 35 arbitrary stratigraphic units (splits) with data on aggregates, etched bones, fossil remains and artefacts. In explaining the sediment characteristics that point to climatic parameters, we consistently took into account the Holocene standards for the site. We found that the climate in OIS 3 was colder and damper than in OIS 1 and OIS 5. People and animals responded to the climatic changes in OIS 3 with more visits to the cave, but not at the same time. The climatic change was presumably reflected in the microlocation of the cave mainly by the longer duration of snow cover.
A horizontal core 2.8 m in length drilled from the Georgia Giant column in Carlsbad Cavern provides climate information for the last 164 ka. Forty-six alpha spectrometric U-series ages determined at intervals of ∼7.6 cm along the core indicate five periods of deposition and five hiatuses, the longest from 136 to 110 ka. Variations in growth rate (0 to 70 mm/ka), in the abundance of aragonite, chalcedony, and Fe-bearing phases, and in 13C indicate that glacial intervals of the last 164 ka, OIS 6, 4, and 2, were much wetter than today, as were the colder substages 5d and 5b of OIS 5. By contrast, during the two warmest periods of the past 164 ka, namely OIS 5e and 1, there was no deposition on either side of the speleothem, suggesting conditions as dry or drier than today. The record from Carlsbad parallels data from many other sites in the southwestern USA and northern Mexico, and data from marine sediments and ice cores, demonstrating the extent to which ice sheet fluctuations influenced conditions in southern New Mexico. Detailed correlation of δ13C values in the Georgia Giant, which range from −6.6 to +0.9‰ relative to PDB, with distant speleothem records and with data from ice cores, further documents the li