Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That epigeum is the surface environment [23].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for pore water (Keyword) returned 14 results for the whole karstbase:
LATE-STAGE DOLOMITIZATION OF THE LOWER ORDOVICIAN ELLENBURGER GROUP, WEST TEXAS, 1991, Kupecz J. A. , Land L. S. ,
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

ORIGIN OF ENDOGENETIC MICRITE IN KARST TERRAINS - A CASE-STUDY FROM THE CAYMAN ISLANDS, 1995, Jones B. , Kahle C. F. ,
Cavities in the dolostones of the Cayman Formation (Miocene) on Grand Cayman and Cayman Brac commonly contain spar calcite cements and/or a variety of exogenetic (derived from sources external to the bedrock) and endogenetic (derived from sources in the bedrock) internal sediments. Micrite is a common component in many of these internal sediments. The exogenetic micrite, which is typically laminated and commonly contains fragments of marine biota, originated from the nearby shallow lagoons. The endogenetic micrite formed as a residue from the breakdown of spar calcite crystals by etching, as constructive and destructive envelopes developed around spar calcite crystals, by calcification of microbes, by breakdown of calcified filamentous microbes, and by precipitation from pore waters. Once produced, the endogenetic micrite may be transported from its place of origin by water flowing through the cavities. Endogenetic micrite can become mixed with the exogenetic micrite. Subsequently, it is impossible to recognize the origin of individual particles because the particles in endogenetic micrite are morphologically like the particles in exogenetic micrite. Formation of endogenetic micrite is controlled by numerous extrinsic and intrinsic parameters. In the Cayman Formation, for example, most endogenetic micrite is produced by etching of meteoric calcite crystals that formed as a cement in the cavities or by microbial calcification. As a result, the distribution of the endogenetic micrite is ultimately controlled by the distribution of the calcite cement and/or the microbes-factors controlled by numerous other extrinsic variables. Irrespective of the factors involved in its formation, it is apparent that endogenetic micrite can be produced by a variety of processes that are operating in the confines of cavities in karst terrains

Controls on bacterial sulphate reduction in a dual porosity aquifer system: the Lincolnshire Limestone aquifer, England, 2000, Bottrell Sh, Moncaster Sj, Tellam Jh, Lloyd Jw, Fisher Qj, Newton Rj,
Chemical and sulphur isotopic analyses are presented of fissure-waters and pore-waters in the deep confined zone of a dual porosity carbonate aquifer. Some of the fissure-waters show good evidence for bacterial sulphate reduction, with low concentrations of sulphide present which is strongly to moderately depleted in 34S relative to sulphate. The sulphur geochemistry is best interpreted as mixing between: (i) a reduced water with sulphide ~60[per mille sign] depleted in 34S relative to sulphate; and (ii) a sulphate-rich water from up-dip in the aquifer. In addition, sulphide oxidation occurs where sufficiently oxidizing water is drawn in by abstractions. The large isotope fractionation factor associated with the sulphidic waters is probably the result of redox cycling of sulphur with little net reduction, rather than a true kinetic fractionation factor. By contrast, pore-waters in the 'sulphate reducing zone' show little or no evidence for the effects of sulphate reduction, despite the fact that the pore-waters represent a significant reservoir of sulphate for reduction. Some pore-waters have been modified recognizably by diffusional exchange with the fissure-waters, but the aquifer matrix has not been colonized by sulphate reducing bacteria, probably because porethroats in the limestone are too small for bacteria to pass. Physical exclusion of bacteria from the aquifer matrix and limited diffusional exchange are likely to exert fundamental controls on bacterial redox processes in dual porosity aquifer systems and other systems with low permeability due to small pore interconnections

Dolomitization of Holocene Shallow-Marine Deposits Mediated by Sulfate Reduction and Methanogenesis in Normal-Salinity Seawater, Northern Belize, 2000, Teal Chellie S. , Mazzullo S. J. , Bischoff William D. ,
Dolomite constitutes an average of 12% of the Holocene organic-rich sediments over a 15 km2 area of the Cangrejo Shoals mudbank in northern Belize. Although it defines a laterally persistent stratiform body that averages 3 m thick, it is present throughout the 7.6-m-thick sediment section. These transgressive sediments are less than [~]6400 years old and were deposited in shallow-marine environments of normal salinity. The dolomite is dominantly cement, and average crystal size is 7 m. There are no significant correlations among amount of dolomite vs. sediment texture, mineralogy, porosity, or mole % MgCO3 in associated particulate high-Mg calcite, depth, or location on the shoals. The dolomites are poorly ordered and calcic (39.5-44.5 mole % MgCO3), with low mean Mn (210 ppm) and relatively high mean Sr (1034 ppm) concentrations. There is no evidence of recrystallization or geochemical alteration of the dolomite. {delta}18O values of the dolomites range from 0.5 to 2.8{per thousand}PDB, and the mean value (2.1{per thousand}) suggests that the dolomite precipitated from normal-salinity pore water. Dolomite {delta}13C values range from -5.2{per thousand} to .6{per thousand}PDB (mean seawater {delta}13C = 0.5{per thousand}), which suggests dolomitization promoted by both bacterial sulfate reduction and methanogenesis in environments with anoxic pore water. Dolomitization attending these organodiagenetic reactions apparently was reversible over time, and episodic rather than continual precipitation is indicated. Requisite Mg and Ca were provided by seawater and by some dissolution of host sediments. The most rapid period of dolomitization may have been during early transgression, when relatively high sedimentation rates sustained high levels of organodiagenesis and pore-water alkalinities

Toward a coastal ground-water typology, 2001, Bokuniewicz H,
Although submarine ground-water discharge is recognised as being of physical and ecological significance, direct measurements are rare, and calculations are hampered by a lack of offshore data. Classification of the world's coast with respect to its potential, submarine ground-water contribution would help to focus attention on the most important areas and to extrapolate existing data. A classification may be based on relevant physical/climatological parameters (e.g. precipitation, soil type etc.), or geologic/geomorphic classes (e.g. karst, coastal plain, etc.), or on a collection of state parameters. State parameters for a coastal ground-water typology may include aquifer thickness, onshore hydraulic gradient, anisotropy and fractal dimension of the shoreline. Topographic gradient can serve as a surrogate for the hydraulic gradient. A fourth type of classification may be based on the distribution of salinity in the subterranean estuary but adequate subsurface data are not yet available. (C) 2001 Elsevier Science B.V. All rights reserved

Concepts and models of dolomitization: a critical reappraisal, 2004, Machel Hans G. ,
Despite intensive research over more than 200 years, the origin of dolomite, the mineral and the rock, remains subject to considerable controversy. This is partly because some of the chemical and/or hydrological conditions of dolomite formation are poorly understood, and because petrographic and geochemical data commonly permit more than one genetic interpretation. This paper is a summary and critical appraisal of the state of the art in dolomite research, highlighting its major advances and controversies, especially over the last 20-25 years. The thermodynamic conditions of dolomite formation have been known quite well since the 1970s, and the latest experimental studies essentially confirm earlier results. The kinetics of dolomite formation are still relatively poorly understood, however. The role of sulphate as an inhibitor to dolomite formation has been overrated. Sulphate appears to be an inhibitor only in relatively low-sulphate aqueous solutions, and probably only indirectly. In sulphate-rich solutions it may actually promote dolomite formation. Mass-balance calculations show that large water/rock ratios are required for extensive dolomitization and the formation of massive dolostones. This constraint necessitates advection, which is why all models for the genesis of massive dolostones are essentially hydrological models. The exceptions are environments where carbonate muds or limestones can be dolomitized via diffusion of magnesium from seawater rather than by advection. Replacement of shallow-water limestones, the most common form of dolomitization, results in a series of distinctive textures that form in a sequential manner with progressive degrees of dolomitization, i.e. matrix-selective replacement, overdolomitization, formation of vugs and moulds, emplacement of up to 20 vol% calcium sulphate in the case of seawater dolomitization, formation of two dolomite populations, and -- in the case of advanced burial -- formation of saddle dolomite. In addition, dolomite dissolution, including karstification, is to be expected in cases of influx of formation waters that are dilute, acidic, or both. Many dolostones, especially at greater depths, have higher porosities than limestones, and this may be the result of several processes, i.e. mole-per-mole replacement, dissolution of unreplaced calcite as part of the dolomitization process, dissolution of dolomite due to acidification of the pore waters, fluid mixing (mischungskorrosion), and thermochemical sulphate reduction. There also are several processes that destroy porosity, most commonly dolomite and calcium sulphate cementation. These processes vary in importance from place to place. For this reason, generalizations about the porosity and permeability development of dolostones are difficult, and these parameters have to be investigated on a case-by-case basis. A wide range of geochemical methods may be used to characterize dolomites and dolostones, and to decipher their origin. The most widely used methods are the analysis and interpretation of stable isotopes (O, C), Sr isotopes, trace elements, and fluid inclusions. Under favourable circumstances some of these parameters can be used to determine the direction of fluid flow during dolomitization. The extent of recrystallization in dolomites and dolostones is much disputed, yet extremely important for geochemical interpretations. Dolomites that originally form very close to the surface and from evaporitic brines tend to recrystallize with time and during burial. Those dolomites that originally form at several hundred to a few thousand metres depth commonly show little or no evidence of recrystallization. Traditionally, dolomitization models in near-surface and shallow diagenetic settings are defined and/or based on water chemistry, but on hydrology in burial diagenetic settings. In this paper, however, the various dolomite models are placed into appropriate diagenetic settings. Penecontemporaneous dolomites form almost syndepositionally as a normal consequence of the geochemical conditions prevailing in the environment of deposition. There are many such settings, and most commonly they form only a few per cent of microcrystalline dolomite(s). Many, if not most, penecontemporaneous dolomites appear to have formed through the mediation of microbes. Virtually all volumetrically large, replacive dolostone bodies are post-depositional and formed during some degree of burial. The viability of the many models for dolomitization in such settings is variable. Massive dolomitization by freshwater-seawater mixing is a myth. Mixing zones tend to form caves without or, at best, with very small amounts of dolomite. The role of coastal mixing zones with respect to dolomitization may be that of a hydrological pump for seawater dolomitization. Reflux dolomitization, most commonly by mesohaline brines that originated from seawater evaporation, is capable of pervasively dolomitizing entire carbonate platforms. However, the extent of dolomitization varies strongly with the extent and duration of evaporation and flooding, and with the subsurface permeability distribution. Complete dolomitization of carbonate platforms appears possible only under favourable circumstances. Similarly, thermal convection in open half-cells (Kohout convection), most commonly by seawater or slightly modified seawater, can form massive dolostones under favourable circumstances, whereas thermal convection in closed cells cannot. Compaction flow cannot form massive dolostones, unless it is funnelled, which may be more common than generally recognized. Neither topography driven flow nor tectonically induced ( squeegee-type') flow is likely to form massive dolostones, except under unusual circumstances. Hydrothermal dolomitization may occur in a variety of subsurface diagenetic settings, but has been significantly overrated. It commonly forms massive dolostones that are localized around faults, but regional or basin-wide dolomitization is not hydrothermal. The regionally extensive dolostones of the Bahamas (Cenozoic), western Canada and Ireland (Palaeozoic), and Israel (Mesozoic) probably formed from seawater that was pumped' through these sequences by thermal convection, reflux, funnelled compaction, or a combination thereof. For such platform settings flushed with seawater, geochemical data and numerical modelling suggest that most dolomites form(ed) at temperatures around 50-80 {degrees}C commensurate with depths of 500 to a maximum of 2000 m. The resulting dolostones can be classified both as seawater dolomites and as burial dolomites. This ambiguity is a consequence of the historical evolution of dolomite research

Origin of Meter-Scale Submarine Cavities and Herringbone Calcite Cement in a Cambrian Microbial Reef, Ledger Formation (U.S.A.), 2004, De Wet Cb, Frey Hm, Gaswirth Sb, Mora Ci, Rahnis M, Bruno Cr,
Meter-scale submarine cavities in Middle Cambrian shelf-margin microbial reef strata indicate large-scale dewatering processes, in conjunction with substrate instability related to interreef channeling and shelf-edge downslope creep and slip. Syndepositional cement precipitation within the cavities preserved delicate microbial fabrics and stabilized the reef system. Radiaxial fibrous calcite and herringbone calcite cements line the cavity interiors isopachously. The two phases cannot be discriminated on the basis of Fe, Mn, or Sr contents, but do have different isotopic signatures. Slightly more negative {delta}13C values in herringbone calcite suggest that abrupt transitions between radiaxial fibrous and herringbone calcite cement are the result of rapid and repeated changes in pore-fluid oxygen levels. Storm-driven pore-water circulation renewed oxygenated seawater flow into the cavities, resulting in precipitation of radiaxial fibrous calcite. A threshold level of oxygen reduction resulted in the change to herringbone calcite precipitation. The pore fluids associated with herringbone calcite did not have elevated Mn or Fe concentrations, as suggested in previous studies. Herringbone calcite appears to be more susceptible to diagenetic alteration than radiaxial fibrous cement however, as indicated by greater resetting of oxygen isotope values

Persistence of 17 {beta}-Estradiol in Water and Sediment-Pore Water from Cave Streams in Central Missouri, 2005, Peterson Eric W. , Wicks Carol M. , Kelley Cheryl A. ,
Concentrations less than 10 ng/L of 17 {beta}-estradiol (E2), a natural estrogen, have been linked to adverse health effects in fish, including skewed sex distributions, reproductive failure, and organ impairment. The persistence of E2 in carbonate aquifer systems is not well documented. Water and sediment from cave streams within the Ozark Plateau of Missouri, USA, were collected and analyzed for E2. The persistence of E2 in the water was examined in two separate experiments, in which the holding temperatures (20{degrees}C vs. 4{degrees}C), bottle type, exposure to light, and filtration were varied. During two trials, no statistical difference was observed in the concentration of E2, suggesting that E2 is stable within the water. The fate of E2 was also examined in sediment-pore water collected from the cave streams in two independent trials. In trial 1, a significant decrease in E2 was noted over the 29 days of the experiment. However, in trial 2, no change in E2 concentration was observed. The results indicate that E2 is relatively stable in cave stream water and may persist in the sediment

Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya, 2005, Bookhagen B, Thiede Rc, Strecker Mr,
The intensity of the Asian summer-monsoon circulation varies over decadal to millennial time scales and is reflected in changes in surface processes, terrestrial environments, and marine sediment records. However, the mechanisms of long-lived (2-5 k.y.) intensified monsoon phases, the related changes in precipitation distribution, and their effect on landscape evolution and sedimentation rates are not yet well understood. The arid high-elevation sectors of the orogen correspond to a climatically sensitive zone that currently receives rain only during abnormal (i.e., strengthened) monsoon seasons. Analogous to present-day rainfall anomalies, enhanced precipitation during an intensified monsoon phase is expected to have penetrated far into these geomorphic threshold regions where hillslopes are close to the angle of failure. We associate landslide triggering during intensified monsoon phases with enhanced precipitation, discharge, and sediment flux leading to an increase in pore-water pressure, lateral scouring of rivers, and oversteepening of hillslopes, eventually resulting in failure of slopes and exceptionally large mass movements. Here we use lacustrine deposits related to spatially and temporally clustered large landslides (>0.5 km3) in the Sutlej Valley region of the northwest Himalaya to calculate sedimentation rates and to infer rainfall patterns during late Pleistocene (29-24 ka) and Holocene (10-4 ka) intensified monsoon phases. Compared to present-day sediment-flux measurements, a fivefold increase in sediment-transport rates recorded by sediments in landslide-dammed lakes characterized these episodes of high climatic variability. These changes thus emphasize the pronounced imprint of millennial-scale climate change on surface processes and landscape evolution

Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes, 2006, Wallmann Klaus, Drews Manuela, Aloisi Giovanni, Bohrmann Gerhard,
During the MARGASCH cruise M52/1 in 2001 with RV Meteor we sampled surface sediments from three stations in the crater of the Dvurechenskii mud volcano (DMV, located in the Sorokin Trough of the Black Sea) and one reference station situated 15[no-break space]km to the northeast of the DMV. We analysed the pore water for sulphide, methane, alkalinity, sulphate, and chloride concentrations and determined the concentrations of particulate organic carbon, carbonate and sulphur in surface sediments. Rates of anaerobic oxidation of methane (AOM) were determined using a radiotracer (14CH4) incubation method. Numerical transport-reaction models were applied to derive the velocity of upward fluid flow through the quiescently dewatering DMV, to calculate rates of AOM in surface sediments, and to determine methane fluxes into the overlying water column. According to the model, AOM consumes 79% of the average methane flux from depth (8.9 [middle dot] 10 6[no-break space]mol a- 1), such that the resulting dissolved methane emission from the volcano into the overlying bottom water can be determined as 1.9 [middle dot] 10 6[no-break space]mol a- 1. If it is assumed that all submarine mud volcanoes (SMVs) in the Black Sea are at an activity level like the DMV, the resulting seepage represents less than 0.1% of the total methane flux into this anoxic marginal sea. The new data from the DMV and previously published studies indicate that an average SMV emits about 2.0 [middle dot] 10 6[no-break space]mol a- 1 into the ocean via quiescent dewatering. The global flux of dissolved methane from SMVs into the ocean is estimated to fall into the order of 10 10[no-break space]mol a- 1. Additional methane fluxes arise during periods of active mud expulsion and gas bubbling occurring episodically at the DMV and other SMVs

Hydrocarbon Biomarkers in the Topla-Mezica Zinc-Lead Deposits, Northern Karavanke/Drau Range, Slovenia: Paleoenvironment at the Site of Ore Formation, 2006, Spangenberg Jorge E. , Herlec Ursos,
The Mississippi Valley-type zinc and lead deposits at Topla (250,150 metric tons (t) of ore grading 10 wt % Zn and 3.3 wt % Pb) and Me[z]ica (19 million metric tons (Mt) of ore grading 5.3 wt % Pb and 2.7 wt % Zn) occur within the Middle to Upper Triassic platform carbonate rocks of the northern Karavanke/Drau Range geotectonic units of the Eastern Alps, Slovenia. The ore and host rocks of these deposits have been investigated by a combination of inorganic and organic geochemical methods to determine major, trace, and rare earth element (REE) concentrations, hydrocarbon distribution, and stable isotope ratios of carbonates, kerogen, extractable organic matter, and individual hydrocarbons. These data combined with sedimentological evidence provide insight into the paleoenvironmental conditions at the site of ore formation. The carbonate isotope composition, the REE patterns, and the distribution of hydrocarbon biomarkers (normal alkanes and steranes) suggest a marine depositional environment. At Topla, a relatively high concentration of redox sensitive trace elements (V, Mo, U) in the host dolostones and REE patterns parallel to that of the North American shale composite suggest that sediments were deposited in a reducing environment. Anoxic conditions enhanced the preservation of organic matter and resulted in relatively higher total organic carbon contents (up to 0.4 wt %). The isotopic composition of the kerogen ({delta}13Ckerogen = -29.4 to -25.0{per thousand}, {delta}15Nkerogen = -13.6 to 6.8{per thousand}) suggests that marine algae and/or bacteria were the main source of organic carbon with a very minor contribution from detrital continental plants and a varying degree of alteration. Extractable organic matter from Topla ore is generally depleted in 13C compared to the associated kerogen, which is consistent with an indigenous source of the bitumens. The mineralization correlates with {delta}15Nkerogen values around 0 per mil, 13C depleted kerogen, 13C enriched n-heptadecane, and relatively high concentrations of bacterial hydrocarbon biomarkers, indicating a high cyanobacterial biomass at the site of ore formation. Abundant dissimilatory sulfate-reducing bacteria, feeding on the cyanobacterial remains, led to accumulation of biogenic H2S in the pore water of the sediments. This biogenic H2S was mainly incorporated into sedimentary organic matter and diagenetic pyrite. Higher bacterial activity at the ore site also is indicated by specific concentration ratios of hydrocarbons, which are roughly correlated with total Pb plus Zn contents. This correlation is consistent with mixing of hydrothermal metal-rich fluids and local bacteriogenic sulfide sulfur. The new geochemical data provide supporting evidence that Topla is a low-temperature Mississippi Valley-type deposit formed in an anoxic supratidal saline to hypersaline environment. A laminated cyanobacterial mat, with abundant sulfate-reducing bacteria was the main site of sulfate reduction

Pit cave morphologies in eolianites: variability in primary structure control, 2011, Moore Paul J. , Seale L. Don, Mylroie John E.

The landforms of San Salvador, Bahamas, demonstrate extensive karst development, in particular epikarst features called pit caves. Studies on Hog Cay, an interior dune ridge located north of the San Salvador International Airport runway, indicate that some pit caves have morphologies controlled by bedding. These pit caves, initiating within the vadose zone, have a tendency to follow the foreset beds of the dune for some distance and are analogous to solution chimneys found in continental settings. These solution chimneys are distinguished from vertical shafts, which propagate vertically into the vadose zone of the
subsurface with little, if any, horizontal offset.

Previous field observations have described how eolian deposits can be sorted by grain size into alternating coarse-grained and fine-grained strata. The alternating strata undergo selective cementation, where the coarse-grained strata become poorlycemented and the fine-grained strata become well-cemented because of retention of pore waters. This is observed in weathered outcrops as poorly-cemented micro-recesses and well-cemented micro-ledges. In the subsurface, the coarse-grained, poorlycemented strata are the preferred flow path for vadose water. This water is perched upon and flows laterally along the foreset beds on the well-cemented, fine-grained strata. Pit caves forming under these conditions are described as solution chimneys. Also found on Hog Cay are pit caves that extend from the surface down to near sea level. These vertical shafts are generally found on the crests of dunes, with the deepest shaft being over 15 meters. They commonly display a near-perfect cylindrical shape and extend vertically with no horizontal offset. The walls of vertical shafts exhibit micro-ledge and micro-recess morphology; however, the vertical shafts have no indication of bedding control, which may be due to cementation in the fine-grained layers
being less complete in certain areas, facilitating vertical shaft development.

Preliminary XRD analysis of the pit caves shows that the top and bottom wall rocks of one pit is almost entirely calcite, but the wall rocks in the middle of the pit have a high aragonite content. These observations are consistent with long residence time of meteoric water in the epikarst at the top of the pits, and in the fill material at the base of the pits, such that aragonite was inverted to calcite. However, the rapid transit time of the vadose water along the pit walls allowed dissolution to enlarge the pit, but without inversion of the primary aragonite.


Carbonate porosity creation by mesogenetic dissolution: Reality or illusion?, 2012, Ehrenberg Stephen N. , Walderhaug Olav, Bjorlykke Knut

Many authors have proposed that significant volumes of porosity are created by deep-burial dissolution in carbonate reservoirs. We argue, however, that this model is unsupported by empirical data and violates important chemical constraints on mass transport. Because of the ubiquitous presence and rapid kinetics of dissolution of carbonate minerals, the mesogenetic pore waters in sedimentary basins can be expected to be always saturated and buffered by carbonates, providing little opportunity for the preservation of significantly undersaturated water chemistry during upward flow, even if the initial generation of such undersaturated pore water could occur. A review of the literature where this model has been advanced reveals a consistent lack of quantitative treatment. In consequence, the presumption of mesogenetic dissolution producing a net increase in secondary porosity should not be used in the prediction of carbonate reservoir quality. 


EARTH TIDE, A POTENTIAL DRIVER FOR HYPOGENIC FLUID FLOW: OBSERVATIONS FROM A SUBMARINE CAVE IN SW TURKEY, 2014, Bayari C. S. , Ozyurt N. N.

Initiation and development of karstification requires a con­tinuous flushing of pore water in equilibrium with carbon­ate minerals. Under confined flow conditions, the energy required for pore water transport is supplied by external pressure sources in addition to the by earth’s gravity. Earth tides and water loads over the confined flow system are the main sources of ex­ternal pressure that drives the pore water. Earth tides, created by the sum of the horizontal components of tide generation forces of moon and sun, causes expansion and contraction of the crust in horizontal direction. Water load on top of the confined flow system causes vertical loading/unloading and may be in the form of recharge load or ocean loading in the inland and sub-oceanic settings, respectively. Increasing and decreasing tide generating force results in pore water transport in the confined system by means of contraction and expansion, respectively. Since these forces operate in perpendicular directions, pore water flushing by earth tides becomes less effective when water load on top of the confined flow system increases. Temporal variation of fresh­water content in a submarine cave is presented as an example of groundwater discharge driven by earth tides and recharge load.


Results 1 to 14 of 14
You probably didn't submit anything to search for