Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That tectonic is pertaining to structural features due to the deformation of the crust [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for residence times (Keyword) returned 21 results for the whole karstbase:
Showing 1 to 15 of 21
Significance and origin of very large regulating power of some karst aquifers in the Middle East. Implication on karst aquifer classification, , Elhakim M, Bakalowicz M,
SummaryKarst aquifers are the main groundwater resource in Lebanon as well as in most Mediterranean countries. Most of them are not exploited in a sustainable way, partly because their characteristics remain unknown. Karst aquifers are so complex that the assessment of their resource and their exploitable storage requires an analysis of their whole functioning, particularly by analysing the spring hydrograph. Among all various methods, the method proposed by Mangin aims to characterize at the same time the recharge conditions and the storage and recession of the saturated zone by analyzing the spring hydrograph. This method defines two parameters, the infiltration delay i, and the regulating power k which are the roots of a classification of karst systems. This classification makes the distinction between karst and porous aquifers considering the value of the regulating power. k is assumed to be lower than 0.5 in karst, and between 0.5 and 1 for all other aquifers, 1 being the upper limit.The study of karst aquifers in Lebanon shows values of k > 0.5, and even 1; former data from the literature show that other karst springs in Middle East have comparable characteristics. In fact, what is not considered by Mangin and others, k is equivalent to a mean residence time in years of water in the saturated zone. So long residence times are normally observed in poorly karstified aquifers, or containing abandoned, not functioning karstification. The geological framework in which the studied springs are located in fact shows that these aquifers have been subject to a long, complex evolution, as a consequence of the base level rising. This rising produced the flooding of the successive karst drainage network, which does not really function anymore and provides a large storage capacity to the aquifer. The very interesting properties of these aquifers make them prime targets for fulfilling the increasing needs of water

Radiocarbon concentration and origin of thermal Karst waters in the region of the Bukk Mountains, northeastern Hungary, 1995, Hertelendi E. , Veres M. , Futo I. , Svingor E. , Miko L. , Lenart L. , Deak J. , Suveges M. ,
Karst springs are abundant in Hungary, and many are thermal (temperatures >30 degrees C). As thermal springs are a significant part of Hungary's water resources, it is important to quantify their travel times in the karst systems. Thus, we chose to measure T and delta(18)O in the water and delta(13)C and C-14 in dissolved inorganic carbon (DIC) in water from 50 thermal and nonthermal springs and wells in the Bukk Mountains, northeastern Hungary, Environmental isotope data confirm the karst waterflow pattern implied by earlier studies. We found the water in warm springs and boreholes to be mixtures of cold young and old thermal water. We also determined short mean-residence times for some large cold springs. The C-14 activities measured in these springs indicate that the recharge area of the karst aquifer is open to the atmosphere, and atmospheric CO2 contributes to the C-14 activity of these groundwaters. We observed good correlation between C-14 and H-3 activities and we determined negative correlations between C-14 concentration and delta(13)C values and temperature. From the delta(18)O values of the oldest thermal waters, we attribute their origin to precipitation during colder temperatures than at present

Combined use of environmental isotopic and hydrochemical data in differentiation of groundwater flow patterns through the Aladağ karstic aquifer-Turkey, Application of Tracers in Arid zone Hydro, 1995, Bayari C. S. , Gunay G.
Distinction between the different groundwater flow systems in karstic areas constitutes one of the major objetives of the basin-wide hydrogeologic research. Use of environmental isotopic and hydrochemical investigation techniques provide a great deal of information for the identification of regional groundwater flow systems. The Lower Zamantı Basin, located in the eastern Taurids, presents an accountable water resource potential that can be used for hydroelectric power production. The basin, with the elevation range between 400 m and 350 m, occupies a catchment area of 2000 km2. Humid and semi-arid climatic regimes prevail in the southern and northern parts of the basin. The carbonate rocks and the overlaying impervious ophiolite nappe constitute the major geologic units in the area. Systematic hydrochemical and environmental isotopic surveys have been carried out to discriminate between the different groundwater flow systems existing in the basin. Hydrochemical studies have been conducted by insitu measurements, sampling and analyses of water samples from about 80 points. Based on the results of hydrochemical evaluations, 23 sampling points, including streams and karstic springs, have been selected for environmental isotopic survey. The integrated evaluation of the available data indicates clearly that two different groundwater flow patterns exist in the basin; namely a shallow flow and a deep regional flow. The characteristic values of temperature, electrical conductivity, carbonate alkalinity and log PCO2 of the shallow-flow in the karstic effluents fed by shallow groundwater circulation springs are 8C, 80 S/cm, 1.5 meq/l and 10-2 atm, respectively. On the other hand, higher values, such as 15C, 455 S/cm, 5.0 meq/l and 10-1 atm are observed in the springs fed by deep-regional groundwater flow. The tritium data indicate that the springs fed by the deep-regional groundwater have longer residence times. Moreover, the recharge area elevations, as envisaged from the oxygen-18 data, also provide supporting evidence for the distinction of different groundwater flow patterns. Additionally, comparison of groundwater temperature with oxygen-18 content presents reliable information to understand the possible interaction among the different karstic effluents.

Elevated and variable values of 13C in speleothems in a British cave system, 1997, Baker A, Ito E, Smart Pl, Mcewan Rf,
[delta] 13C isotope variations in speleothems have been investigated for samples from the British Isles, where plants which use the Hatch-Slack or C4 photosynthetic pathway are not present. The range of [delta] 13C expected in speleothem carbonate formed in isotopic equilibrium with soil CO2 derived from the overlying C3 vegetation should thus fall in the range -12 to -6[per mille sign]. Forty-one actively growing speleothem samples from low-discharge sites were analysed from Stump Cross Caverns, Yorkshire, England. Ten percent have [delta] 13C greater than -6%. In addition, a large range of [delta] 13C was observed (-8.06 1.38[per mille sign], a 1 [sigma] variability of 17%), with adjacent samples having [delta] 13C differing by a maximum of 4.74[per mille sign]. Similar findings were obtained from a review of analyses of late Quaternary speleothem samples from the British Isles, with 75% of flowstone samples and 57% of high-flow stalagmite samples exhibiting elevated [delta] 13C. Three possible processes are proposed as possible causes of elevated [delta] 13C in speleothems. Firstly, fractionation may occur between the stalactite and stalagmite due to evaporation or degassing. Secondly, degassing of the groundwaters may have occurred within the aquifer before reaching the cave void, allowing release of some CO2 from the water whilst remaining saturated in calcium. Finally, the elevated [delta] 13C may be due to short water residence times in the soil, such that equilibrium between soil water and soil CO2 is not reached. Evidence presented here demonstrates that any one of these mechanisms may be important in the karst areas of the British Isles. Caution is needed before interpreting the [delta] 13C signal within speleothems in terms of palaeovegetation

Precipitation and dissolution of reactive solutes in fractures, 1998, Dijk P. , Berkowit B.

The precipitation and dissolution of reactive solutes, transported under the action of fully developed laminar flow in saturated fractures, is analyzed assuming an irreversible first-order kinetic surface reaction for one component. Equations describing solute transport, precipitation and dissolution, and the evolution of fracture aperture were approximated and solved using combined analytical and numerical techniques; dimensionless transport parameters incorporated into the solutions were estimated from data available in the literature. Fractures with initially flat, linearly constricted, and sinusoidal apertures were investigated. The initial fracture geometry and the solute saturation content of the inflowing fluid have a profound effect on the reaction processes. The results show that the evolution of the solute transport and fracture geometry can be adequately described by the Damköhler and Péclet numbers. Two extreme transport regimes were identified: relatively uniform evolution of fracture apertures and nonuniform evolution of fracture apertures restricted to the inlet region of fractures. In the case of precipitation with half-life times of the order of seconds to years and with fluid residence times of the order of minutes to days, the time for a fracture to close completely is of the order of days to millions of years. This is consistent with the order of magnitude of hydrogeological timescales. In the model the process of dissolution is the inverse of precipitation, although the combined solute transport and reaction processes are irreversible. These results and the applied dimensionless analysis can be used as a basis for the development of more complex models of reactive solute transport, precipitation, and dissolution in saturated fractured media.


Temperature as a natural tracer of short residence times for groundwater in karst aquifers, 1999, Martin J. B. , Dean R. W.
Chemistry of karst waters is controlled by reactions with aquifer rocks, the extent of mixing between water sources, and variations in the composition of recharged waterThe extent of reactions and mixing may be determined uniquely if compositions of both recharged and discharged water are known, such as where sinking streams are linked to resurgent springs, and if residence time in the subsurface can be measuredSuch a linked system occurs along the Santa Fe River in north-central Florida, where the river flows underground for approximately 52 km as it crosses from confined to unconfined portions of the Floridan AquiferTemporal variations in temperature can be correlated between the river sink, the river rise, and Sweetwater Lake, a karst window approximately midway between the sink and riseDelays in the arrival time of temperature maxima and minima from the sink to Sweetwater Lake and from Sweetwater Lake to the Rise reflect the residence time of the river water in the subsurfaceResidence time correlates with the river stage and ranges from approximately 12 hours to more than four days at high and low stage, respectively between the river sink and SweetwaterLake, and from about six hours to nearly two days at high and low stage, respectively, between Sweetwater Lake and the river riseThese short residence times reflect minimum flow rates of between 13 and 9 km/day, indicating conduit flowKnowing the residence time at any stage allows sampling of water as it enters the aquifer, and then again as it dischargesChanges in the chemistry of water as it passes through the subsurface should reflect chemical reactions, mixing, or both

Geochemistry of Carlsbad Cavern Pool Waters, Guadalupe Mountains, New Mexico, 2000, Forbes, J. R.
Water samples collected from 13 pools in Carlsbad Cavern were analyzed to determine the concentrations of major ions. Air temperature, relative humidity, and carbon dioxide concentration of the cave atmosphere were also measured. Large differences in water quality exist among different cave pools, with some pools containing very fresh water, while others are brackish, with total dissolved solids concentrations up to 5000 mg/L. Brackish water pools appear to be associated with those portions of the cave where evaporation rates are high and/or soluble minerals are present. Geochemical speciation modeling showed that some pools are close to saturation with respect to the common cave minerals aragonite, calcite, gypsum, and hydromagnesite. A tracer test was performed using a non-toxic bromide salt to estimate the leakage rates of selected pools. Pool volumes calculated based on dilution of the bromide tracer were up to 550 m. The tracer test results were used to calculate mean residence times for the water in each pool. Calculated mean residence times based on bromide tracer loss rates ranged from less than a year for Rookery Pool and Devils Spring to 16 years for Lake of the Clouds. Calculated pool leakage rates ranged from 2 L/day to over 100 L/day. The pools with the highest leakage rates appear to be Rookery Pool, Green Lake, and Lake of the Clouds. The long residence times indicated by the tracer tests suggest that the pools evaporate more water than they leak. However, evaporation should result in an accumulation of dissolved chloride and other solutes in the pools, which for most pools does not appear to be the case. Taken together, these observations suggest that the pools are recharged primarily by infrequent precipitation events, separated by long periods of slow evaporation and minimal leakage.

Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records, 2000, Fairchild Ij, Borsato A, Tooth Af, Frisia S, Hawkesworth Cj, Huang Ym, Mcdermott F, Spiro B,
At two caves (Clamouse, S France and Ernesto, NE Italy), cave drip and pool waters were collected and sampled at intervals over a 2-3 year period. Mg/Ca and Sr/Ca concentration ratios, corrected for marine aerosols, are compared with those of bedrocks and, in some cases, aqueous leachates of soils and weathered bedrocks. Cave waters do not lie along mixing lines between calcite and dolomite of bedrock carbonate, but typically show enhanced and covarying Mg/Ca and Sr/Ca. Four factors are considered as controlling processes. (1) The much faster dissolution rate of calcite than dolomite allows for the possibility of increase of Mg/Ca if water-rock contact times are increased during drier conditions. A theoretical model is shown to be comparable to experimental leachates. (2) Prior calcite precipitation along a flow path is a powerful mechanism for generating enhanced and covarying Mg/Ca and Sr/Ca ratios. This mechanism requires the solution to lose CO, into pores or caverns. (3) Incongruent dolomite dissolution has only limited potential and is best regarded as two separate processes of dolomite dissolution and calcite precipitation. (4) selective leaching of Mg and Sr with respect to Ca is shown to be important in leachates from Ernesto where it appears to be a phenomenon of calcite dissolution. In general selective leaching can occur whenever Ca is sequestered into precipitates due to freezing or drying of soils, or if there is derivation of excess Sr and Mg from non-carbonate species. The Ernesto cave has abundant water supply which in the main chamber is derived from a reservoir with year-round constant P-CO2 of around 10(-2.4) and no evidence of calcite precipitation in the karst above the cave. Two distinct, bur overlying trends of enhanced and covarying Mg/Ca and Sr/Ca away from the locus of bedrock compositions are due to calcite precipitation within the cave and, at a variable drip site, due to enhanced selective leaching at slow drip rates. Mg-enhancement in the first chamber is due to a more dolomitic bedrock and longer residence times. The Clamouse site has a less abundant water supply and presents geochemical evidence of prior calcite precipitation. both in the cave and in overlying porous dolomite/dedolomitized limestone bedrock. Initial P-CO2 values as high as 10(-1) are inferred. Experimental incubations of Clamouse soils which generated enhanced P-CO2 and precipitated CaCO3 had compositions similar to the karst waters. Calcite precipitation is inferred to he enhanced in drier conditions. Hydrological controls on cave water chemistry imply that the trace element chemistry of speleothems may be interpretable in palaeohydrological terms. Drier conditions tends to promote not only longer mean residence times (enhancing dolomite dissolution and hence Mg/Ca), but also enhances degassing and calcite precipitation leading to increased Mg/Ca and Sr/Ca. (C) 2000 Elsevier Science B.V. All rights reserved

Timescales for nitrate contamination of spring waters, northern Florida, USA, 2001, Katz B. G. , Bohlke J. K. , Hornsby H. D. ,
Residence times of groundwater, discharging from springs in the middle Suwannee River Basin, were estimated using chlorofluorocarbons (CFCs), tritium ((3) H), and tritium/helium-3 (H-3/He-3) age-dating methods to assess the chronology of nitrate contamination of spring waters in northern Florida. During base-flow conditions for the Suwannee River in 1997-1999, 17 water samples were collected from 12 first, second, and third magnitude springs discharging groundwater from the Upper Floridan aquifer. Extending age-dating techniques, using transient tracers to spring waters in complex karst systems, required an assessment of several models [piston-flow (PFM), exponential mixing (EMM), and binary-mixing (BMM)] to account for different distributions of groundwater age. Multi-tracer analyses of four springs yielded generally concordant PFM ages of around 20 2 years from CFC- 12, CFC- 113, H-3, and He-3. with evidence of partial CFC- 11 degradation. The EMM gave a reasonable fit to CFC- 113, CFC- 12. and H-3 data, but did not reproduce the observed He-3 concentrations or H-3/He-3 ratios, nor did a combination PFM-EMM. The BMM could reproduce most of the multi-tracer data set only if both endmembers had H-3 concentrations not much different front modern values. CFC analyses of 14 additional springs yielded apparent PFM ages from about 10 to 20 years from CFC- 113, with evidence of partial CFC- 11 degradation and variable CFC-12 contamination. While it is not conclusive, with respect to the age distribution within each spring, the data indicate that the average residence times were in the order of 10-20 years and were roughly proportional to spring magnitude. Applying similar models to recharge and discharge of nitrate based on historical nitrogen loading data yielded contrasting trends for Suwanee County and Lafayette County. In Suwance County, spring nitrate trends and nitrogen isotope data were consistent with a peak in fertilizer input in the 1970s and a relatively high overall ratio of artificial fertilizer/manure whereas in Lafayette County, spring nitrate trends and nitrogen isotope data were consistent with a more monotonic increase in fertilizer input and relatively low overall ratio of artificial fertilizer/manure. The combined results of this study indicate that the nitrate concentrations of springs in the Suwannee River basin have responded to increased nitrogen loads from various sources in the watersheds over the last few decades, however, the responses have been subdued and delayed because the average residence time of groundwater discharging from springs are in the order of decades. (C) 2001 Published by Elsevier Science B.V

Deep water circulation, residence time, and chemistry in a karst complex, 2003, Aquilina L, Ladouche B, Doerfliger N, Bakalowicz M,
We investigated the hydrochemistry of a complex karst hydrosystem made of two carbonate units along a coastal lagoon. Ground water emerges on the lagoon floor from a submarine spring. In addition, thermal waters circulate through the limestone and mix with karst water near the lagoon shore. A distinction between the water from the two carbonate units is related to marine influences and human activities. In one of the massifs, the data show an incongruent dissolution of dolomite with time. In the other system, a slight contamination by saline fluids from the thermal reservoir has led to high calcium and magnesium concentrations. Cl-36, C-14, and H-3 data constrain the residence time of the water, and allow for the distinguishing of four circulation types: (1) shallow surface circulation (primarily above sea level) in the karstic units with short residence times (<20 years); (2) shallow subsurface circulation (approximately 0 to -50 in) below the karstic units with residence time in the order of 50 years; (3) deep circulation at depth of 700 to 1500 m in the Jurassic limestones below thick sedimentary cover, with residence time of several thousand years for a part of the water; and (4) deep circulation at a depth of similar to2500 in, which represents the thermal reservoir in the Jurassic units with residence time of similar to100,000 years. An interpretative hydrogeological framework is based on the constraints of the geochemical analyses of the deep thermal system. and by water flow from the surface to the deep parts of the carbonate formations

Conduit properties and karstification in the unconfined Floridan Aquifer, 2004, Screaton E. , Martin J. B. , Ginn B. , Smith L. ,
Exchange of water between conduits and matrix is an important control on regional chemical compositions, karstification, and quality of ground water resources in karst aquifers. A sinking stream (Santa Fe River Sink) and its resurgence (River Rise) in the unconfined portion of the Floridan Aquifer provide the opportunity to monitor conduit inflow and outflow. The use of temperature as a tracer allows determination of residence times and velocities through the conduit system. Based on temperature records from two high water events, flow is reasonably represented as pipe flow with a cross-sectional area of 380 m(2), although this model may be complicated by losses of water from the conduit system at higher discharge rates. Over the course of the study year, the River Rise discharged a total of 1.9 x 10(7) m(3) more water than entered the River Sink, reflecting net contribution of ground water from the matrix into the conduit system. However, as River Sink discharge rates peaked following three rainfall events during the study period, the conduit system lost water, presumably into the matrix. Surface water in high flow events is typically undersaturated with respect to calcite and thus may lead to dissolution, depending on its residence time in the matrix. A calculation of local denudation is larger than other regional estimates, perhaps reflecting return of water to conduits before calcite equilibrium is reached. The exchange of matrix and conduit water is an important variable in karst hydrology that should be considered in management of these water resources

Linear model describing three components of flow in karst aquifers using O-18 data, 2004, Long A. J. , Putnam L. D. ,
The stable isotope of oxygen, 180, is used as a naturally occurring ground-water tracer. Time-series data for 5 180 are analyzed to model the distinct responses and relative proportions of the conduit, intermediate, and diffuse flow components in karst aquifers. This analysis also describes mathematically the dynamics of the transient fluid interchange between conduits and diffusive networks. Conduit and intermediate flow are described by linear-systems methods, whereas diffuse flow is described by mass-balance methods. An automated optimization process estimates parameters of lognormal, Pearson type III, and gamma distributions, which are used as transfer functions in linear-systems analysis. Diffuse flow and mixing parameters also are estimated by these optimization methods. Results indicate the relative proximity of a well to a main conduit flowpath and can help to predict the movement and residence times of potential contaminants. The three-component linear model is applied to five wells, which respond to changes in the isotopic composition of point recharge water from a sinking stream in the Madison aquifer in the Black Hills of South Dakota. Flow velocities as much as 540 m/d and system memories of as much as 71 years are estimated by this method. Also, the mean, median, and standard deviation of traveltimes; time to peak response; and the relative fraction of flow for each of the three components are determined for these wells. This analysis infers that flow may branch apart and rejoin as a result of an anastomotic (or channeled) karst network. Published by Elsevier B.V

Investigation of the groundwater residence time distribution in the Aladag (Kayseri-Adana, Turkey) karstic aquifer. PhD Thesis, 2004, Ozyurt, N. Nur

The Aladað karstic aquifer of Eastern Taurids Range extends between 400m and 3750m elevations and, covers an area of 1900 km2 within Adana-Kayseri-Niðde provinces. The study covers the Kapuzbaþý, Göksu shallow circulation and Yerköprü 1, Yerköprü 2 and Yerköprü 3 deep circulation springs that extend from recharge area to the Zamanti river.
The system is fed by precipitation of Mediterranean origin and total precipitation input, evapo-transpiration, net recharge and its volumetric equivalent are found to be 1113 mm, 451 mm, 879 mm and 939 106 m3. Mean annual discharges of Yerköprü 3, Yerköprü 1 and 2, Göksu and, Kapuzbaþý and Barazama springs are 449 106 m3, 82 106 m3, 299 106 m3 and 146 106 m3. Noble gas ( 20Ne, 40Ar, 84Kr) and 18O isotopes suggest recharge area elevation and temperature ranges of 1700-2100m and 2-6 oC. The helium (He) content of groundwater increases with increasing circulation depth. Year round biweekly-monthly samples’ electrical conductivity, tritium ( 3H) and 18O content reveal that Kapuzbaþý and Göksu springs and, Yerköprü 1 and Yerköprü 2 springs behave similarly among themselves.
The “CFC model ages” of the springs where, chlorofluorocarbon (CFC) contents increased from 1997 to 2002, range between 10 to 20 years and 20 to 30 years in the shallow and deep circulation parts, respectively. The 3H/3He* absolute age of groundwater from springs is around 20 +/- 2.5 years. In the computer code LUMPEDUS that was developed for unsteady state lumped parameter modeling applications, 3H, tritiogenic helium-3 ( 3He*), CFC-11, CFC-12, CFC-113, and 18O were used as environmental tracers. Serially connected plug-exponential flow model applied to all springs. All models were calibrated for observed outflux and their forecasted 3H, 3He* and 18O time series were found to be in good agreement with the observations. Mean residence times found by models are in agreement with 3H/3He* ages. According to residence time distribution suggested by models, most of the discharges comprise recharges that occurred within last 20 to 30 years. Sixty per cent of discharge comprises recharges of the last 3 to 4 years. The active reservoir volumes of Yerköprü 1-2, Kapuzbaþý, Göksu and Yerköprü 3 springs are found to be 1604 106 m3, 2808 106 m3, 5728 106 m3 and 8609 106 m3 , respectively. According to well established linear relationship between reservoir volumes and discharge elevations, an active volume increases 50 106 m3 per 1m decrease in elevation. Cumulative active reservoir volume is found to be 18749 106 m3 at 450 m elevation where Yerköprü 3 spring is located. Uppermost elevation of active reservoir is located at 836m. Groundwater’s velocity ranges from 2.09 m/day to 5.57 m/day and the corresponding hydraulic conductivities for different reservoirs are between 41.8 m/day and 212.2 m/day. The ordering of hydraulic conductivity among springs ( > > > ) seems to be related to their time of formation. Based on an assumption of 1500m of maximum hydraulic head at the recharge area, the effective porosity of the system is estimated to be 0.86 per cent.


Sources and processes affecting sulfate in a karstic groundwater system of the Franconian Alb, southern Germany, 2005, Einsiedl F, Mayer B,
Chemical and isotope analyses on groundwater sulfate and H-3 measurements on groundwater were used to determine the sulfate sources and sulfur transformation processes in a heterogeneous karst aquifer of the Franconian Alb, southern Germany. Sulfate was found to be derived from atmospheric deposition. Young groundwater was characterized by high sulfate concentrations and delta(34)S values similar to those of recent atmospheric sulfate deposition. However,the delta(18)O values of groundwater SO42- were depleted by several per mil with respect to those of atmospheric deposition. This isotopic shift is indicative of mineralization of carbon-bonded S in the vadose zone of the karst system. In groundwater with mean residence times of more than 60 years, a trend of increasing delta(34)S values and 6180 values with decreasing sulfate concentrations was observed. This trend could not be solely explained by preindustrial atmospheric sulfate deposition with higher delta(34)S values, and hence, we conclude that bacterial (dissimilatory) sulfate reduction in the porous matrix of the karst aquifer must have occurred. This process has the potential to contribute to long-term biodegradation of contaminants in the porous rock matrix representing the dominant water reservoir of the fissured porous karst aquifer

Steady- and unsteady-state lumped parameter modelling of tritium and chlorofluorocarbons transport: hypothetical analyses and application to an alpine karst aquifer, 2005, Ozyurt N. N. , Bayari C. S. ,
Determination of a groundwater's mean residence time with the aid of environmental tracers is common in hydrogeology. Many of the lumped parameter (LP) applications used for this purpose have been based on steady-state models. However, the results may be misleading if a steady LP model is used to simulate the environmental tracer transport in an unsteady aquifer. To test this hypothesis, the results of steady and unsteady versions of several LP models were evaluated theoretically and in an alpine karst aquifer case by using tritium, oxygen-18 and chlorofluorocarbons (CFCs). The results reveal that the mean residence times obtained may be significantly different between the steady and unsteady versions of the same model. For the karst aquifer investigated, a serially connected exponential and a plug flow model were run under unsteady conditions. It is shown that outflux calibration with an unsteady model provides a firm basis in evaluating the results of models. An outflux-calibrated unsteady model predicted reasonably the observed series of water isotopes. The calibrated model's CFCs output overpredicts the observed concentrations, probably because of the time lag in the unsaturated zone of the alpine karst aquifer. Copyright (c) 2005 John Wiley & Sons, Ltd

Results 1 to 15 of 21
You probably didn't submit anything to search for