Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That geologic hazard is a naturally occurring or man-made geologic condition or phenomenon that presents a risk or is a potential danger to life and property. examples include landsliding, flooding, earthquakes, ground subsidence, coastal and beach erosion, faulting, dam leakage and failure, mining disasters, pollution and waste disposal, and seawater intrusion [1].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for roots (Keyword) returned 17 results for the whole karstbase:
Showing 1 to 15 of 17
Significance and origin of very large regulating power of some karst aquifers in the Middle East. Implication on karst aquifer classification, , Elhakim M, Bakalowicz M,
SummaryKarst aquifers are the main groundwater resource in Lebanon as well as in most Mediterranean countries. Most of them are not exploited in a sustainable way, partly because their characteristics remain unknown. Karst aquifers are so complex that the assessment of their resource and their exploitable storage requires an analysis of their whole functioning, particularly by analysing the spring hydrograph. Among all various methods, the method proposed by Mangin aims to characterize at the same time the recharge conditions and the storage and recession of the saturated zone by analyzing the spring hydrograph. This method defines two parameters, the infiltration delay i, and the regulating power k which are the roots of a classification of karst systems. This classification makes the distinction between karst and porous aquifers considering the value of the regulating power. k is assumed to be lower than 0.5 in karst, and between 0.5 and 1 for all other aquifers, 1 being the upper limit.The study of karst aquifers in Lebanon shows values of k > 0.5, and even 1; former data from the literature show that other karst springs in Middle East have comparable characteristics. In fact, what is not considered by Mangin and others, k is equivalent to a mean residence time in years of water in the saturated zone. So long residence times are normally observed in poorly karstified aquifers, or containing abandoned, not functioning karstification. The geological framework in which the studied springs are located in fact shows that these aquifers have been subject to a long, complex evolution, as a consequence of the base level rising. This rising produced the flooding of the successive karst drainage network, which does not really function anymore and provides a large storage capacity to the aquifer. The very interesting properties of these aquifers make them prime targets for fulfilling the increasing needs of water

Land use in the karstic lands in the Mediterranean region, 1999, Atalay Ibrahim
Karstic lands have special importance in terms of soil formation and land-use. Soil appears only on the flat and slightly undulating karstic lands, while soils are found along the cracks and bedding surfaces between the layers on the hilly karst areas although these lands are rocky in appearance. Karstic lands in the hilly area are not conducive to cultivation. But rocky areas create a favourable habitat for the growth of forests except in an arid climate. Because the tree roots easily follow and develop along the cracks in the limestone. As a general rule soil erosion does not occur on sub-horizontal karst surfaces due to the fact that atmospheric waters easily infiltrate along the cracks. Natural generation of vegetation like the maquis-type occurs via the root suckers, but coniferous trees such as cedar, fir, pine through seed dispersal. The clearance of natural vegetation on the karstic lands leads to the formation of bare lands. That is why the slopes of the limestone hillsides have been converted into bare and/or rocky terrains in places where natural vegetation has been completely destroyed.

Limestone ordinances of New Jersey and Pennsylvania: a practitioner's experiences, 1999, Fischer Ja,
Ordinances promulgating land use procedures related to construction in areas underlain by carbonate rocks have been under discussion since the mid-1970s in Pennsylvania and since the mid-1980s in New Jersey. At first, the proposed ordinances only considered ground water contamination then, later included the safety- (or stability) related concerns of constructing in karst areas. The first ordinance addressing both concerns as well as not being so restrictive as to eliminate development is believed to have been passed in Clinton Township, New Jersey in May, 1988. Recently, several other nearby townships have passed ordinances based (either loosely or tightly) upon the 'Model Ordinance' developed by the 'Limestone Committee' of the North Jersey Resource Conservation and Development Council. The Model Ordinance has its roots in the Clinton Township Ordinance. Other ordinances, with little to no geotechnical input, have also been passed (and sometimes repealed) by well-meaning municipalities. As the subsurface conditions are complex and erratic (folded and faulted carbonates), an appropriate site evaluation is difficult to define and generally more costly to perform than a conventional site investigation. With this mix of ordinances, the variability in subsurface conditions and the diverse experience levels of the regional practitioners, the resulting effectiveness of these ordinances is mixed, from the humorous to the very positive. In general, the Clinton Township and Model Ordinance-based legislation, which specify procedures to be used in an investigation, work well. Other ordinances refer to standards which do not exist, have requirements which cannot be met in the real world, or appear poorly related to any realistic geotechnical concepts. This paper will describe some typical examples of projects from the viewpoint of both the reviewer and the submitter. A state-of-the-practice presentation, not necessarily state-of-the-art. (C) 1999 Elsevier Science B.V. All ri hts reserved

Calcrete morphology and karst development in the Upper Old Red Sandstone at Milton Ness, Scotland, 2000, Balin Df,
The Upper Old Red Sandstone at Milton Ness, Scotland, is notable for its excellent preservation of calcrete textures, which are comparable with some of the best Quaternary examples. It is also significant for the implications that can be drawn from the association between karst and calcrete, with this example interpreted to have formed entirely within a semi-arid environment. Karst cavities were developed in a mature hardpan calcrete, generated in sandy fluvial sediments with associated aeolian deposits. Subsequent to karst cavity generation, clasts derived from the subaerially exposed hardpan were locally transported and deposited as a laterally traceable bed connecting the tops of all the cavities. Both this bed and the karst infills were subsequently recalcretized in the final phase of the profile's evolution. Although calcrete-karst associations often are interpreted as the alternation between semi-arid and humid climates, respectively, this example is interpreted to be a result of water accumulating on the nearly impervious hardpan surface under fairly constant semiarid conditions, evidenced by the recalcretization of both the karst infill and the calcrete-derived breccia ( boulder calcrete'). Additional substrate modification also has taken place by plant roots; the remarkable development of rhizoliths in these Old Red Sandstone sediments should emphasize the need to consider plant influence on other non-marine rocks of post-Silurian age

Sediment storage and yield in an urbanized karst watershed, 2005, Hart Evan A. , Schurger Stephen G. ,
In karst watersheds, sinkholes and other drainage features control the temporal and spatial pattern of sediment storage across the landscape. However, studies dealing with sedimentation in karst watersheds are scarce and the sediment storage function of sinkholes and caves has not been investigated using a sediment budget approach. In this study, we use estimates of channel erosion, sinkhole sedimentation, and suspended sediment yield to examine changes in sediment storage in the 9 km2 Upper Pigeon Roost Creek fluviokarst watershed near Cookeville, TN. The study watershed has undergone urbanization over the last ~ 50 years, and sinkholes and caves in the area show signs of recent sedimentation (buried tree roots, buried cultural artifacts, etc.). While sinkholes are generally considered to be sediment sinks, sinkholes examined in this study are shown to cycle between periods of net sediment storage and net sediment loss. Using copyright dates on trash items buried in sinkhole deposits, we estimated the residence time of sinkhole-stored sediment to range from 6 to 10 years. However, other evidence indicates that some sinkholes may store sediment for several centuries. We propose that sediment storage within sinkholes is controlled by several factors including sinkhole drainage area, sinkhole morphology, and basin sediment yield. In addition, changes in sediment storage in karst watersheds are contingent upon random events such as sinkhole collapses. Annual sediment yield was estimated to be 111 Mg km- 2 year- 1 for the entire study watershed and ranged from 11 to 128 Mg km- 2 year- 1 for 3 sub-watersheds. Sediment eroded from the watershed, perhaps during historic settlement of the area, is stored within a large cave system underlying the city. However, the results of a partial sediment budget indicate that the cave is presently a net sediment source. Overall, the findings indicate that the sediment storage function of caves and sinkholes varies spatially and temporally, and that these changes need to be incorporated into sediment budgets for karst watersheds

Ecology and hydrology of a threatened groundwater-dependent ecosystem: the Jewel Cave karst system in Western Australia, PhD Thesis, 2005, Eberhard, S. M.

Groundwater is a significant component of the world’s water balance and accounts for >90 % of usable freshwater. Around the world groundwater is an important source of water for major cities, towns, industries, agriculture and forestry. Groundwater plays a role in the ecological processes and ‘health’ of many surface ecosystems, and is the critical habitat for subterranean aquatic animals (stygofauna). Over-abstraction or contamination of groundwater resources may imperil the survival of stygofauna and other groundwater-dependent ecosystems (GDEs). In two karst areas in Western Australia (Yanchep and Leeuwin-Naturaliste Ridge), rich stygofauna communities occur in cave waters containing submerged tree roots. These aquatic root mat communities were listed as critically endangered because of declining groundwater levels, presumably caused by lower rainfall, groundwater abstraction, and/or forest plantations. Investigation of the hydrology and ecology of the cave systems was considered essential for the conservation and recovery of these threatened ecological communities (TECs). This thesis investigated the hydrology and ecology of one of the TECs, located in the Jewel Cave karst system in the Leeuwin-Naturaliste Ridge. A multi-disciplinary approach was used to explore aspects pertinent to the hydrology and ecology of the groundwater system.
Thermoluminescence dating of the limestone suggested that development of the karst system dates from the Early Pleistocene and that caves have been available for colonisation by groundwater fauna since that time. Speleogenesis of the watertable maze caves occurred in a flank margin setting during earlier periods of wetter climate and/or elevated base levels. Field mapping and leveling were used to determine hydrologic relationships between caves and the boundaries of the karst aquifer. Monitoring of groundwater levels was undertaken to characterise the conditions of recharge, storage, flow and discharge. A hydrogeologic model of the karst system was developed.
The groundwater hydrograph for the last 50 years was reconstructed from old photographs and records whilst radiometric dating and leveling of stratigraphic horizons enabled reconstruction of a history of watertable fluctuations spanning the Holocene to Late Pleistocene. The watertable fluctuations over the previous 50 years did not exceed the range of fluctuations experienced in the Quaternary history, including a period 11,000 to 13,000 years ago when the watertable was lower than the present level.
The recent groundwater decline in Jewel Cave was not reflected in the annual rainfall trend, which was above average during the period (1976 to 1988) when the major drop in water levels occurred. Groundwater abstraction and tree plantations in nearby catchments have not contributed to the groundwater decline as previously suggested. The period of major watertable decline coincided with a substantial reduction in fire frequency within the karst catchment. The resultant increase in understorey vegetation and ground litter may have contributed to a reduction in groundwater recharge, through increased evapotranspiration and interception of rainfall. To better understand the relationships between rainfall, vegetation and fire and their effects on groundwater recharge, an experiment is proposed that involves a prescribed burn of the cave catchment with before-after monitoring of rainfall, leaf-area, ground litter, soil moisture, vadose infiltration and groundwater levels.
Molecular genetic techniques (allozyme electrophoresis and mitochondrial DNA) were used to assess the species and population boundaries of two genera and species of cave dwelling Amphipoda. Populations of both species were largely panmictic which was consistent with the hydrogeologic model. The molecular data supported the conclusion that both species of amphipod have survived lower watertable levels experienced in the caves during the Late Pleistocene. A mechanism for the colonization and isolation of populations in caves is proposed.
Multi Dimensional Scaling was used to investigate patterns in groundwater biodiversity including species diversity, species assemblages, habitat associations and biogeography. Faunal patterns were related to abiotic environmental parameters. Investigation of hydrochemistry and water quality characterized the ecological water requirements (EWR) of the TEC and established a baseline against which to evaluate potential impacts such as groundwater pollution.
The conservation status of the listed TEC was significantly improved by increasing the number of known occurrences and distribution range of the community (from 10 m2 to > 2 x 106 m2), and by showing that earlier perceived threatening processes (rainfall decline, groundwater pumping, tree plantations) were either ameliorated or inoperative within this catchment. The GDE in the Jewel Cave karst system may not have been endangered by the major phase of watertable decline experienced 1975-1987, or by the relatively stable level experienced up until 2000. However, if the present trend of declining rainfall in southwest Western Australia continues, and the cave watertable declines > 0.5 m below the present level, then the GDE may become more vulnerable to extinction.
The occurrence and distribution of aquatic root mat communities and related groundwater fauna in other karst catchments in the Leeuwin-Naturaliste Ridge is substantially greater than previously thought, however some of these are predicted to be threatened by groundwater pumping and pollution associated with increasing urban and rural developments. The taxonomy of most stygofauna taxa and the distribution of root mat communities is too poorly known to enable proper assessment of their conservation requirements. A regional-scale survey of stygofauna in southwest Western Australia is required to address this problem. In the interim, conservation actions for the listed TECs need to be focused at the most appropriate spatial scale, which is the karst drainage system and catchment area. Conservation of GDEs in Western Australia will benefit from understanding and integration with abiotic groundwater system processes, especially hydrogeologic and geomorphic processes.

A proposed conceptual model for the genesis of the Derbyshire thermal springs, 2007, Brassington Fc,
Ten thermal springs occur in seven centres in Derbyshire, England, with temperatures up to 27.5 {degrees}C compared with an ambient groundwater temperature of about 9 {degrees}C. The springs discharge from a karstic Dinantian limestone aquifer along the boundary with the overlying Namurian strata around the edge of a regional dome structure. The water is heated by deep circulation to as much as 1 km, with the hottest spring being at Buxton spring, where the water is 5000 years old. A comparison of flow data from the Buxton spring with groundwater hydrographs shows seasonality in the thermal flows, suggesting that the loading effects produced by recharge are transmitted through this deep aquifer system. From a review of the geological history and the hydrogeology and the use of measurements on the Buxton spring it is suggested that the thermal flow system may have its roots in ancient convection cells possibly established in the deeply buried aquifer in late Carboniferous-Early Permian times. Subaerial erosion during the Pliocene removed the impermeable cap rocks and allowed both the thermally heated water to form warm springs and this deep groundwater circulation to be recharged by meteoric waters. The location of the individual springs is likely to date from the downcutting during the Late Pleistocene that formed the modern river valley topography

Simultaneous karstifcation and lithifcation of aeolian calcarenite in the southwest coastal part of Western Australia produced syngenetic karstic geomorphological features, such as solution pipes, maze caves, collapsed dolines and pinnacles. $e formation of these geomorphological features was greatly inluenced by the poor cementation and matrix porosity of the calcarenite. Pinnacles, calcarenite pillars up to 5 metres tall with one or more peaks and various types of sediment layers, are most numerous and densest in an area called the Pinnacles in Nambung National Park, Western Australia. Their detailed characteristics and origin are still partially unknown and controversial. Theories suggest that the pinnacles are the final product of one or more of corrosive expansion and coalescence of solution pipes, cemented sediment surrounding the roots, cemented fill of solution pipes, products of focused cementation or remainders of tree-trunks. This article presents descriptions of pinnacles in Nambung National Park based on my feldwork and suggests a polygenetic origin for the pinnacles, with roots playing a major role. The genesis of pinnacles is far more complex than the theories presented so far.

First Records of Polychaetous Annelids from Cenote Aerolito (Sinkhole and Anchialine Cave) in Cozumel Island, Mexico, 2011, Frontanauribe S. C. , Sollsweiss V.

In this study, polychaetous annelids are recorded for the first time in Mexican cenotes and anchialine caves. These organisms were collected in the Cenote Aerolito (Cozumel Island, on the Caribbean coast of Quintana Roo) during three sampling events from February 2006 to April 2008, among algae, roots of mangroves, and in karst sediments. A total of 1518 specimens belonging to five families (Paraonidae, Capitellidae, Nereididae, Dorvilleidae, and Syllidae), ten genera, and eleven species were collected. In the cave system, two specimens of the amphinomid Hermodice carunculata were found. This cenote and its biota are now in danger of disappearing because of a marina construction project in its western shore.

Eolianites and Karst Development in the Mayan Riviera, Mexico, 2011, Kelley Kristin N. , Mylroie John E. , Mylroie Joan R. , Moore Christopher M. , Collins Laura R. , Ersek Lica, Lascu Ioan, Roth Monica J. , Moore Paul J. , Passion Rex, Shaw Charles

Coastal Quintana Roo, Mexico, including islands such as Cozumel and Isla Mujeres, contains numerous ridges of Quaternary eolian calcarenite in two packages, one Pleistocene and one Holocene. The Pleistocene eolianites are recognizable in the field by well-developed terra rossa paleosol and micritic crust on the surface, containing a fossil epikarst. The foreset beds of these eolianites commonly dip below modern sea level, and fossilized plant root structures are abundant. The Holocene
eolianites lack a well-developed epikarst, and have a calcernite protosol on their surfaces. The degree of cementation, and the grain composition, are not reliable indicators of the age of Quaternary eolianites.

The Pleistocene eolianites have been previously described (e.g. Ward, 1997) as exclusively regressive-phase eolianites, formed by the regression during the oxygen isotope substages (OIS) 5a and 5c. However, certain eolianites, such as those at Playa Copal, contain flank margin caves, dissolution chambers that form by sea water/fresh water mixing in the fresh-water lens. For such mixing dissolution to occur, the eolianite must already be present. As the flank margin caves are found at elevations of 2-6 m above current sea level, the caves must have developed during the last interglacial sea-level highstand, and the eolianites could not have formed on the regression from that or younger highstands. Therefore the eolianites must be transgressive-phase
eolianites developed at the beginning of the last interglacial sea-level highstand, or either transgressive- or regressive-phase eolianites from a previous sea-level highstand that occurred earlier in the Pleistocene. There is no field evidence of oxygen isotope substage 5c or 5a eolianites as suggested by Ward (1997).

Most coastal outcrops show classic regressive–phase Pleistocene eolianites as illustrated by complex and well-developed terra rossa paleosols and epikarst, and dense arrays of fossilized plant roots. However, in addition to flank margin caves, other evidence of transgressive-phase eolianites includes notches in eolianites on the west side of Cozumel, with subtidal marine facies onlapping the notches. The absence of a paleosol between those two units indicates that the eolianite is a transgressive-phase deposit from the last interglacial. All Holocene eolianites are, by definition, transgressive-phase units.

U.S. Geological Survey Karst Interest Group Proceedings, Fayetteville, Arkansas, April 2629, 2011/ Scientific Investigations Report 20115031, 2011, Av

Karst aquifer systems are present throughout parts of the United States and some of its territories and are developed in carbonate rocks (primarily limestone and dolomite) that span the entire geologic time frame. The depositional environments, diagenetic processes, and post-depositional tectonic events that form carbonate rock aquifers are varied and complex, involving both biological and physical processes that can influence the development of permeability. These factors, combined with the diverse climatic regimes under which karst development in these rocks has taken place result in the unique dual or triple porosity nature of karst aquifers. These complex hydrologic systems often present challenges to scientists attempting to study groundwater flow and contaminant transport.
The concept for developing a Karst Interest Group evolved from the November 1999 National Groundwater Meeting of the U.S. Geological Survey (USGS), Water Resources Division. As a result, the Karst Interest Group was formed in 2000. The Karst Interest Group is a loose-knit grass-roots organization of USGS employees devoted to fostering better communication among scientists working on, or interested in, karst hydrology studies.
The mission of the Karst Interest Group is to encourage and support interdisciplinary collaboration and technology transfer among USGS scientists working in karst areas. Additionally, the Karst Interest Group encourages cooperative studies between the different disciplines of the USGS and other Federal agencies, and university researchers or research institutes.
This fifth workshop is a joint workshop of the USGS Karst Interest Group and University of Arkansas HydroDays workshop, sponsored by the USGS, the Department of Geosciences at the University of Arkansas in Fayetteville. Additional sponsors are: the National Cave and Karst Research Institute, the Edwards Aquifer Authority, San Antonio, Texas, and Beaver Water District, northwest Arkansas. The majority of funding for the proceedings preparation and workshop was provided by the USGS Groundwater Resources Program, National Cooperative Mapping Program, and the Regional Executives of the Northeast, Southeast, Midwest, South Central and Rocky Mountain Areas. The University of Arkansas provided the rooms and facilities for the technical and poster presentations of the workshop, vans for the field trips, and sponsored the HydroDays banquet at the Savoy Experimental Watershed on Wednesday after the technical sessions.

Trophic Dynamics in a Neotropical Limestone Cave, 2011, Marconi Silva, Rogrio Parentoni Martins, Rodrigo Lopes Ferreira

The temporal budgets of the input, retainment and use by invertebrates of detritus and root tufts were evaluated in a short tropical limestone cave (337 m long). Detritus penetrate only through the stream in lower quantities in the dry season, contrary to what happens in the rainy season. However, water transport energies in the rainy season prevent detritus retainment. Roots tufts that emerge from the bottom of the stream provide shelter and food for several species. The abundance (log10) (R2 = 0.63; P < 0.02) and richness (log10) (R2 = 0.63; P < 0.01) related positively with the root tuft biomass (log10). In the terrestrial environment (ground), guano is the main secondary resource available for the invertebrates; the constant production of this resource has shown to influence the structure and distribution of invertebrates. Unfavorable temperature conditions and, especially low soil moisture, promote low plant detritus consumption rates. Historically, different authors assumed that organic resources imported by water are more available in caves in rainy seasons. It is clear that the importation of organic detritus in the rainy season is higher than in the dry season, but as shown in this work, the stochastic pulse flows continually disturb and remove the previously accumulated resource. So, the food that is truly used by the cave communities is that transported at the end of the rainy season (and during all the dry season) that becomes available for the cave fauna. The cave functionality depends, so, directly of the epigean food resources.

Transport and consumption of organic detritus in a neotropical limestone cave , 2012, Souzasilva Marconi, Ferreira De Oliveira Bernardi Leopoldo, Parentoni Martins Rogrio, Lopes Ferreira Rodrigo
Caves are permanently aphotic environments, a fact that precludes the occurrence of photosynthetic organisms. In these systems the resource is allochthonous, coming mainly from the surrounding epigean environment, being imported by physical and biological agents. Even knowing about the importance of the organic allochthonous resources in caves, little is known of their importation and processing. The present work had as an objective, the measuring the coarse particulate organic matter processing and import rates in the subterranean environment. The cave studied was Lapa da Fazenda Extrema I, limestone cave, located in Brazilian savanna biome. Through bimonthly collections, it was observed that the organic detritus penetrated into the cave in low amounts in dry season and high amounts in rainy season. The processing of the organic plant matter in the aquatic hypogean environment was moderate (K-day=0.025), in the epigean environment the processing was predominantly slow (K-day =0.0104). The detritus commonly brought to the interior of the cave were large woods (58.18 g/day), followed by leaves and fragmented material (12.76 g/day), fruits and seeds (0.0069 g/day), animal carcasses (0.002 g/day) and roots (0.001 g/day). The highest richness and abundances of invertebrates were found in the same periods in which there were the highest rates of organic matter import to the cave.


The persistent drought of the 2012 summer in the Midwestern United States significantly impacted the health and vigor of Illinois’ crops. An unforeseen outcome of the extreme drought was that it provided a rare opportunity to examine and characterize the bedrock surface and underlying karst aquifer within the Driftless Area of northwestern Illinois. Complex networks of vegetated lines and polygonal patterns, herein referred to as crop lines, crisscrossed the dry summer landscape of Jo Daviess County. Initially, the crop lines were examined and photographed using a handheld digital camera on the ground and from a small aircraft at 300 meters altitude above ground level (AGL). The orientations, widths and horizontal separations of the lines were measured. Crop lines and their patterns and orientations were compared with those of crevices in outcrops, road cuts and quarries, and with lineaments seen in LiDAR elevation data of Jo Daviess County.
Primarily confined to alfalfa fields and, to a lesser extent, soybeans and corn, the crop lines are the result of a combination of extremely dry conditions, and a thin soil zone overlying fractured and creviced Galena Dolomite bedrock. The plants forming the lines tend to grow denser, taller (0.5 m vs 0.15 m) and darker/greener than those in adjacent areas. Alfalfa taproots are the deepest of the aforementioned crops extending up to 7 m below the surface. Groundwater and associated soil moisture within the vadose zone present within bedrock fractures and crevices provide the necessary moisture to sustain the overlying healthy plants, while the remaining area of the field exhibits stunted and sparse plant growth. Overall, the crop lines are a reflection of the creviced pattern of the underlying karst bedrock and associated karst aquifer, and reveal the degree and extent of karstification in eastern Jo Daviess County. The crop lines were consistent with the angular lines of adjacent streams that show a rectangular drainage pattern. Stream patterns like these are well known and are due to drainage controlled by crevice/fracture patterns in the top of bedrock. The lines appear to have been formed by two sets of fractures trending roughly north-south and east-west with occasional cross-cutting fractures/crevices. The east-west trending lines are consistent with tension joints, and the north-south lines are consistent with the shear joints identified by earlier researchers. The trends of the crop lines, tension and shear joints are similar to those of lineaments identified from LiDAR elevation data in the same area (N 20° W, and N 70° W and N 70° E) and coincide with the occurrence of karst features throughout eastern Jo Daviess County.The pattern observed in the crop lines closely mimics the fracture/crevice patterns of the bedrock surface. The widths and extent of the lines may be used as a surrogate for the karst features present on the bedrock surfaces. Crop lines, coupled with solution-enlarged crevices seen in bedrock exposures, yield a three dimensional view of the bedrock crevice-fracture system, and ultimately could provide a more complete and accurate model of the karst aquifer in the study area and similar karst areas in the Midwestern United States and perhaps in other karst regions of the world.

Using hydrogeochemical and ecohydrologic responses to understand epikarst process in semi-arid systems, Edwards plateau, Texas, USA, 2013, Schwartz Benjamin F. , Schwinning Susanne, Gerrard Brett, Kukowski Kelly R. , Stinson Chasity L. , Dammeyer Heather C.

The epikarst is a permeable boundary between surface and subsurface environments and can be conceptualized as the vadose critical zone of epigenic karst systems which have not developed under insoluble cover. From a hydrologic perspective, this boundary is often thought of as being permeable in one direction only (down), but connectivity between the flow paths of water through the epikarst and the root systems of woody plants means that water moves both up and down across the epikarst. However, the dynamics of these flows are complex and highly dependent on variability in the spatial structure of the epikarst, vegetation characteristics, as well as temporal variability in precipitation and evaporative demand. Here we summarize insights gained from working at several sites on the Edwards Plateau of Central Texas, combining isotopic, hydrogeochemical, and ecophysiological methodologies. 1) Dense woodland vegetation at sites with thin to absent soils (0-30 cm) is in part supported by water uptake from the epikarst. 2) However, tree transpiration typically becomes water-limited in dry summers, suggesting that the plant-available fraction of stored water in the epikarst depletes quickly, even when sustained cave drip rates indicate that water is still present in the epikarst. 3) Flow paths for water that feeds cave drips become rapidly disconnected from the evaporation zone of the epikarst and out of reach for plant roots. 4) Deep infiltration and recharge does not occur in these systems without heavy or continuous precipitation that exceeds some threshold value. Thresholds are strongly correlated with antecedent potential evapotranspiration and rainfall, suggesting control by the moisture status of the epikarst evapotranspiration zone. The epikarst and unsaturated zone in this region can be conceptualized as a variably saturated system with storage in fractures, matrix porosity, and in shallow perched aquifers, most of which is inaccessible to the root systems of trees, although woody vegetation may control recharge thresholds.

Results 1 to 15 of 17
You probably didn't submit anything to search for