Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That guanobia is an animal association feeding on guano. not considered true cavernicoles as guano is not confined to caves.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for selective corrosion (Keyword) returned 3 results for the whole karstbase:
Condensation Corrosion in Movile Cave, Romania, 1997, Sarbu, S. M. , Lascu, C.
Condensation corrosion is the dissolution of carbonate by acidic vapors condensing above the water table. This process is rarely noted and receives little attention in the mainstream cave literature. The oolitic limestone walls in Movile Caves upper dry passages are severely altered by a selective corrosion mechanism. Temperature differences between the water in the lower passages and the walls in the upper passages and high concentrations of CO2 in the cave atmosphere create favorable conditions for condensation corrosion to take place. Carbon and oxygen stable isotope data support the hypothesis that condensation corrosion is the major mechanism currently affecting the morphology of Movile Caves upper dry level.

Origin of fine-grained carbonate clasts in cave sediments, 2002, Zupan Hajna, Nadja

In many samples of cave clastic sediments the high amount of carbonate clasts is significant. It was found out that their origin is usually in soft white zones of weathered carbonate rock on cave walls. Weathered zones of limestone or dolomite form on the cave walls when the selective corrosive is going on. Incomplete dissolution prepares the carbonate rock for the mechanical erosion and transport of its particles. Where the weathered carbonate rock is in contact with water, both flowing and dripping, it may tear off the particles resulting from selective corrosion. Water carries them along cave passages and when its transporting power decreases, particles accumulate in the form of a fine-grained autochthonous carbonate deposit, in size of clay, silt or fine sand.


Chemical Weathering of Limestones and Dolomites in A Cave Environment, 2003, Zupan Hajna, N.

The weathered parts of carbonate bedrock on cave walls are a consequence of its incomplete chemical dissolution. The phenomenon is expressed in parts of the caves where walls are in contact with clastic fluvial sediments, wetted by percolation water or wetted by condensation water, and not rinsed by flowing or dripping water. The temperature in the cave is not an important parameter of weathered zone formation. Incomplete dissolution is characteristic both of Alpine and of Mediterranean caves. Limestone or dolomite are dissolved by corrosive moisture; the dissolution is distinctly selective and it go as on at intervals depending on inflow of new aggressive water. The weathered zone of limestone or dolomite is almost identical to the parent rocks in its chemical and mineral composition yet it is much more porous. During chemical weathering the amount of Mg, Sr and U is decreased, these components being leached out of limestone and dolomite. The amount of insoluble residue is usually higher in weathered limestones and in some other cases in fresh limestones which is not very common but it may occur.


Results 1 to 3 of 3
You probably didn't submit anything to search for