KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Search in KarstBase
Your search for solute transport model (Keyword) returned 3 results for the whole karstbase:
Coastal karst aquifers have highly variable distributions of porosity and permeability. The ability to assess the volume of aquifer occupied by freshwater in coastal karst aquifers is limited by both the lack of understanding of the effect that regions of cavernous porosity and permeability have on the configuration of the saline-freshwater mixing zone and by the limited knowledge of the location of the cavernous regions. A dual-density ground-water flow and solute transport model was used to explore the effect that the depth, lateral extent, and proximity to the coast of zones of high porosity and permeability has on the configuration of the saline-freshwater mixing zone. These aquifer heterogeneities tend to shift the mixing zone upward relative to the position it would have in aquifers with homogeneous porosity and permeability, Zones of high porosity and permeability located at positions shallow in the aquifer or nearer to the coast had the greatest effect. In fact, for the conditions modeled, position was more important in modifying the configuration of the mixing zone than was changing the ratio of the intrinsic permeability of the cavernous zone to the aquifer matrix from 100 to 1000. Modeling results show that ground-water flow is concentrated into the zones of high porosity and permeability and that flow configuration results in steep salinity gradients with depth, Field observations of the location of the halocline and of step changes in ground-water composition coincident with regions of cavernous porosity in coastal karst aquifers corroborate the model results, In a coastal setting with saline water intruding into an aquifer, the effect of cavernous porosity and associated high permeability is to decrease the volume of aquifer in which freshwater occurs by a greater degree than would occur in an aquifer with homogeneous porosity and permeability
Ground-water flow and solute-transport simulation modeling are major components of most exposure and risk assessments of contaminated aquifers. Model simulations provide information on the spatial and temporal distributions of contaminants in subsurface media but are difficult to apply to karst aquifers in which conduit flow is important. Ground-water flow and solute transport in karst conduits typically display rapid-flow velocities, turbulent-flow regimes, concentrated pollutant-mass discharge, and exhibit open-channel or closed-conduit how Conventional groundwater models, dependent on the applicability of Darcy's law, are inappropriate when applied to karst aquifers because of the (1) nonapplicability of Darcian-flow parameters, (2) typically nonlaminar flow regime, and (3) inability to locate the karst conduits through which most flow and contaminant transport occurs. Surface-water flow and solute-transport models conditioned on a set of parameters determined empirically from quantitative ground-water tracing studies may be effectively used to render fate-and-transport values of contaminants in karst conduits. Hydraulic-flow and geometric parameters developed in a companion paper were used in the surface-water model, TOXI5, to simulate hypothetical slug and continuous-source releases of ethylbenzene in a karst conduit. TOXI5 simulation results showed considerable improvement for predicted ethylbenzene-transport rates and concentrations over qualitative tracing and analytical ground-water model results. Ethylbenzene concentrations predicted by TOXI5 simulations were evaluated in exposure and risk assessment models
Results 1 to 3 of 3
You probably didn't submit anything to search for