Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That piton is 1. (french.) limestone hill having sharply pointed peak [10]. 2. a solid or folded metal spike, of steel or other alloy, to be driven into a crack in the rock to form an anchor [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for south australia (Keyword) returned 28 results for the whole karstbase:
Showing 1 to 15 of 28
Origin of the sedimentary deposits of the Naracoorte Caves, South Australia, , Forbes Ms, Bestland Ea,
The origin of the sediments located in the Naracoorte Caves (South Australia) was investigated via the analysis of strontium isotope ratios (87Sr/86Sr), elemental geochemistry, and mineralogy. Sedimentary deposits located in Robertson, Wet, Blanche and several other chambers in Victoria Cave are all variable mixes of fine sand and coarse silts, which display similar and consistent strontium isotope ratios (0.717-0.725). This suggests that over the 400[no-break space]ka time frame that these deposits span there has been minimal variation in the source of the clastic sediments. Increased strontium concentrations for these cave sediments correspond with increasing silt content, yet there is no correlation between 87Sr/86Sr ratios and silt content. This implies that the silt-sized component of the sediments is the main contributor of strontium to the cave sediments. Comparisons of 87Sr/86Sr with regional surficial deposits show a significant correlation between the cave sediments (avg: 0.7228; n = 27), the fine silt lunettes of the Bool Lagoon area (avg: 0.7224; n = 4), the sandy A horizons of the Coonawarra Red Brown Earths (RBEs; avg: 0.726; n = 5), and Holocene age podsolic sand deposits (0.723). These data suggest that there has been substantial flux from this group of deposits to the caves, as would be expected considering prevailing winds. This relationship is further supported by a strong correlation between many trace elements, including Ti, Zr, Ce, and Y; however, variations in clay mineralogy suggest that the fine silt-dominated lunettes and Padthaway RBEs were not significant contributors to the cave deposits. Hence, the detritus entering the caves was more than likely from areas proximal to the cave entrance and was dominated by medium grain-sized materials. Major regional deposits, including the coarser-grained, calcite-rich Bridgewater Formation sands, basalts from the lower SE, Padthaway Horst granites, Gambier limestone, and metamorphics from the Adelaide geosyncline show minimal correlation in 87Sr/86Sr ratios, elemental geochemistry, and mineralogy with the cave sediments, and are discounted as significant sources. In comparison, 87Sr/86Sr ratios for the Coorong silty sands (0.717-0.724), Lower Murray sands (0.727-0.730), and the medium size silt component of the Murray-Darling River system (0.71-0.72), compare favourably with the cave sediments. This relationship is further supported by similarities in elemental chemistry and mineralogy. Thus, much of the strontium-rich silt that is now located in the Naracoorte Cave sediments likely originated from the Murray-Darling basin. Over time, this material has been transported to the SE of South Australia, where it mixed with the medium sand component of the regressive dune ridge sequence, locally derived organic matter, limestone fragments, and fossil material to produce the unique deposits that we see evident in many of the chambers of the Naracoorte Cave system today

Observations on Caves, Particularly Those Of South Australia - 1862 , 1962, Lane, Edward A.

The historical study of Australian caves and caving areas is fascinating although involving the expenditure of vast amounts of time. Australia's early days are unusually well-documented, but in the case of caves the early history is usually wrapped up in rumour, hearsay and clouded by lack of written record. Most research work means long hours poring over old newspaper files, mine reports, land department records and so on, little of which is catalogued. A small number of exploration journals and scientific studies have extensive material on special cave areas, and of these, the volume by Rev. Julian Edmund Woods, F.G.S., F.R.S.V., F.P.S., etc., and is one of the most interesting. This book gives the ideas and beliefs of 100 years ago concerning the origin, development and bone contents of caves and makes interesting reading in the light of more recent studies of cave origins. Wood's study "Geological Observations in South Australia : Principally in the District South-East of Adelaide" was published in 1862 by Longman, Green, Roberts and Green, London. In a preface dated November 15, 1861, Rev. Woods points out that the book was written while he was serving as a missionary in a 22,000 square mile district, and "without the benefit of reference, museum, library, or scientific men closer than England". Up to the time of writing, almost no scientific or geological work had been done in South Australia and much of the area was completely unexplored. The book, also, contained the first detailed description of caves in the south-east of the state. Father Woods writes about many different types of caves in South Australia, for instance, the "native wells" in the Mt. Gambier/Mt. Shanck area. These are caves, rounded like pipes, and generally leading to water level. Woods points out their likeness to artificial wells. He also writes of sea cliff caves, particularly in the Guichen Bay area, and blow holes caused by the action of the waves on the limestone cliffs. Woods discusses many other types of caves found further inland, particularly bone caves. Father Woods discusses cave origins under two sub-heads: 1. Trap rock caves generally resulting from violent igneous action, and 2. Limestone caves resulting from infiltration of some kind. He is mainly concerned with limestone caves which he sub-divides into (a) crevice caves - caves which have arisen from fissures in the rock and are therefore wedge-shaped crevices, widest at the opening, (b) sea-beach caves, caves which face the seashore and are merely holes that have been worn by the dashing of the sea on the face of the cliff, (c) egress caves, or passages to give egress to subterranean streams, (d) ingress caves, or passages caused by water flowing into the holes of rocks and disappearing underground. These caves would have entrance holes in the ground, opening very wide underneath, and having the appearance of water having entered from above, (e) finally a group of caves which he lists by use as "dens of animals".

Nullarbor Expedition 1963-4, 1964, Anderson, Edward G.

The Nullarbor Plain, Australia's most extensive limestone region, consists of about 65,000 square miles of almost horizontal beds of Tertiary limestone. The Plain extends from near Fowlers Bay, South Australia, approximately 600 miles west across the head of the Great Australian Bight into Western Australia. However, for its size, the Nullarbor appears to be deficient in caves compared with other Australian cavernous limestones. The vastness of the area, isolation, and complete lack of surface water, makes speleological investigation difficult. Some of the most important caves are more than 100 miles apart. The 1963-4 Nullarbor Expedition was organised by members of the Sydney University Speleological Society (SUSS). Two major caves, as well as a number of smaller features were discovered in the western part of the Plain. One cave contains what is believed to be the longest single cave passage in Australia.

Caves of the Coastal Areas of South Australia, 1965, Sexton, R. T.

The majority of South Australian caves occur in the Tertiary and Quaternary limestones of the coastal areas. Their distribution is discussed here on a geological rather than a geographical basis. The most significant caves are briefly described and illustrated to indicate different types and related developments in the coastal limestones. The most notable feature of the limestones is their soft, porous nature. Caves also occur in South Australia in hard, massively bedded Cambrian and Pre-Cambrian limestones and dolomites. These are not discussed in the present paper. To facilitate recording, South Australia has been divided into six zones as shown in Figure 1, and the caves numbered in order of discovery in each area. In general, both the name and the number of the cave have been given, but unnamed caves are specified by number only. The cave maps have been chosen to give as wide a coverage as possible of the various types, or to illustrate points of particular interest. The arrows on the section lines show the direction of viewing, and the sections are numbered to relate them to the plans. Where a cross-section and longitudinal section intersect, the common line has been drawn to relate the sections. The same scale has been used throughout for ease of comparison.

Breeding Caves and Maternity Colonies of the Bent-Winged Bat In South-Eastern Australia, 1966, Dwyer P. D. , Hamiltonsmith E.

Eight breeding Caves of Miniopterus schreibersi (Kuhl) are described from South Australia, Victoria, New South Wales and Southern Queensland, in terms of their structure, the location of nursery areas at which juveniles are deposited after birth, and their physical environments. Maternity colonies are found at these caves through spring, summer and early autumn. Established colonies range from about 15,000 to 200,000 bats at peak size. These individuals are predominantly adult females and their young. Adult males are conspicuous only at the single South Australian breeding cave. Births occur from approximately the beginning of December to mid-January at all colonies except that in South Australia, where a birth period is evident between mid-October to late-November. Artificial warming, as a consequence of bat activity, appears to be characteristic of these Miniopterus schreibersi breeding caves. It is suggested that this may have functional significance in facilitating adequate development of juveniles, and that the habit could be a reflection of the tropical ancestry of this species.

Parietal Art in Koonalda Cave, Nullarbor Plain, South Australia, 1968, Gallus, Alexander

This paper gives a first description of the engravings discovered on the walls of Koonalda Cave(N4), Nullarbor Plain, South Australia. It gives a typologic assessment with reference to known parietal art in the caves of Europe, and to cave engravings discovered in the Katherine area of the Northern Territory, Australia. It establishes the possibility of great antiquity and deals briefly with interpretation. This announcement lays no claim to conclusiveness in the argumentation offered as the facts relating to Australian Palaeolithic Man and his environment are as yet insufficiently known.

Lithification of peritidal carbonates by continental brines at Fisherman Bay, South Australia, to form a megapolygon/spelean limestone association, 1982, Ferguson J, Burne Rv, Chambers La,
Lithification, which commenced less than 3000 yrs BP is still active, and has formed a cavernous limestone containing megapolygons, tepees, and speleothems including pisoliths, floe aragonite, and aragonite pool deposits. The emerging waters evolved from low alkalinity waters of Pleistocene sand and clay coastal plain aquifers which passed through an underlying Tertiare marine carbonate aquifer, have high P CO2 , total carbonate, Ca, and sulfate concentrations. They are close to saturation with respect to aragonite, and their mMg (super 2) /mCa (super 2) ratios approach or exceed the critical aragonite precipitation value. Features which diagnose ancient examples of this process: primary aragonitic cements with high mSr (super 2) /mCa (super 2) values; nonmarine delta 34 S values in gypsum; two superimposed networks of surface polygons, one delineated by extensional boundaries, the other by tepees; high-water vadose-zone isopachous grain cements; interconnected, speleothem-lined cavities; and the presence of evaporites only in surface sediments. Possible ancient examples are recognized in West Texas, Lombardy, and the Atlas Mountains. The areal extent of each of these deposits suggests that the process may be a geologically important feature, and its products may be diagnostic of semi-arid or arid-zone paralic sedimentation.--Modified journal abstract

Abstract: Diving at Cocklebiddy Cave, 1985, Allum, Ron

Cocklebiddy Cave (Western Australia) lies 200km west of the South Australian border on the Nullarbor Plain. It is mostly waterfilled and represents the world's longest cave dive. In September1982 an Australian diving expedition had increased the known length to 4.3km. This was extended to 5.85km in 1983 by the French expedition led by F. Leguen, using motorised underwater scooters and lightweight equipment. The French party regarded the prospects for further extension as poor, since the hitherto wide passage had become rather constricted. The following month, October 1983, a team consisting of Hugh Morrison, Ron Allum and Peter Rogers with 11 supporting divers made a further attempt on the cave using only manual power. They established a camp at Toad Hall, a large air-filled chamber 4.3km into the cave, and dived from there to the constriction which had stopped the French team. From this point Hugh Morrison continued using only one air cylinder, and continued a further 240m. He was stopped only by shortage of air. The explored length of Cocklebiddy now stands at 6.09km, and the only barrier of further exploration is the logistic problem of carrying air cylinders through the constriction. (The full text of this paper is in Australian Caver No.109, pp 2-5, "Cocklebiddy, Australia - World's Longest Cave Dive")

Petrogenesis of Cenozoic, temperate water calcarenites, South Australia; a model for meteoric/shallow burial diagenesis of shallow water calcite sediments, 1989, James Noel P. , Bone Yvonne,

Influence of karst hydrology on water quality management in southeast South Australia, 1994, Emmett A. J. , Telfer A. L.

Southeast South Australia has large reserves of potable groundwater, generally close to the surface. European settlement has had a major impact on groundwater quality due to the presence of extensive karst in the unconfined aquifer. Historically, industries such as cheese factories were often sited close to karst features (e.g. caves and sinkholes) because they provided a convenient means of waste disposal. Although most have long since closed, they have left a legacy of pollution plumes of varying sizes. In Mount Gambier, the main regional centre, the presence of both exposed and subterranean karst features provided a ''perfect system'' for the disposal of stormwater. Prior to the provision of a sewerage system within Mount Gambier, all toilet and household wastewaters were disposed to ground. These activities and the subsequent problems that began emerging in the 1960s have led to a concerted effort over the last 20 years to change the philosophy of waste disposal and to generate an understanding and responsibility by those who live in the region and depend on groundwater for the major part of their water supply. Mount Gambier's water supply comes from the Blue Lake. Groundwater inflow from a highly karstic Tertiary limestone aquifer provides 90% of the recharge to the Blue Lake. The lake is a high-value resource in a high-risk environment and in order to minimize this risk, a water-quality management plan for the lake is currently being developed

The south-east karst province of South Australia., 1994, Grimes K. G.

The South-East Karst Province of South Australia is an extensive area of low relief with dolines, cenotes, uvalas, and a variety of cave types developed in the soft, porous, flat-lying Tertiary Gambier Limestone and also as syngenetic karst in the overlying calcarenite dunes of the Pleistocene Bridgewater Formation. The most spectacular surface karst features are the large collapse dolines, especially those that extend below the water table to form cenotes. Shallow swampy hollows occur in superficial Quaternary sediments. These are an enigmatic feature of the Bool Region, where all gradations appear to occur between definite karst dolines and nonkarstic hollows. Some depressions may be polygenetic-involving a combination of: (1) primary depositional hollows on coastal flats or in dune fields, (2) deflation, and (3) karst solution and subsidence. There are extensive underwater cave systems in the southern part of the province, and the bulk of the cave development there may well lie below the present water table, although these systems would have been at least partly drained during the lower sea levels of the last glacial period. Systematic variations within the province reflect differences in the parent rock types, the extent and nature of the cover and, most importantly, the hydrology-in particular the depth to the water table and its gradient

The Speleothem medium of finger flutings and its isotopic geochemistry., 1995, Bednarik Robert G.
The isotopic geochemistry relating to the re-precipitation of calcite in caves is considered, in terms of its theory, natural manifestations, and relationship with questions of radiometric dating of carbonate speleothems. Specific forms of' such deposits are considered, together with the various modification processes they are subjected to. More specifically, particular forms of rock art found within, as well as on or under such deposits are examined, such as finger flutings commonly found in caves of Europe and Australia. Some of the variables relating to their occurrence are elucidated, their preservation and possible dating is reviewed in the light of these factors, and new radiometric data from South Australian caves are introduced and discussed.

The Stromatolites of the Cenote Lakes of the Lower South East of South Australia, 1996, Thurgate, Mia E.

Stromatolite are lithified, laminated, organosedimentary deposits. Preliminary examination of eight cenote lakes near Mt. Gambier has revealed the presence of tens of thousands of actively - forming stromatolites. Based on the external morphology, 14 different types of stromatolites have been identified, columnar growth forms are most common. Three genus of Diatom and three genus of Cyanobacteria are the most likely responsible for stromatolite development.

Results 1 to 15 of 28
You probably didn't submit anything to search for