Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That cation exchange capacity is the sum total of exchangeable cations that a porous medium can absorb. expressed in moles of ion charge per kilogram of soil (or of other exchanges such as clay) [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for south-australia (Keyword) returned 13 results for the whole karstbase:
Origin of the sedimentary deposits of the Naracoorte Caves, South Australia, , Forbes Ms, Bestland Ea,
The origin of the sediments located in the Naracoorte Caves (South Australia) was investigated via the analysis of strontium isotope ratios (87Sr/86Sr), elemental geochemistry, and mineralogy. Sedimentary deposits located in Robertson, Wet, Blanche and several other chambers in Victoria Cave are all variable mixes of fine sand and coarse silts, which display similar and consistent strontium isotope ratios (0.717-0.725). This suggests that over the 400[no-break space]ka time frame that these deposits span there has been minimal variation in the source of the clastic sediments. Increased strontium concentrations for these cave sediments correspond with increasing silt content, yet there is no correlation between 87Sr/86Sr ratios and silt content. This implies that the silt-sized component of the sediments is the main contributor of strontium to the cave sediments. Comparisons of 87Sr/86Sr with regional surficial deposits show a significant correlation between the cave sediments (avg: 0.7228; n = 27), the fine silt lunettes of the Bool Lagoon area (avg: 0.7224; n = 4), the sandy A horizons of the Coonawarra Red Brown Earths (RBEs; avg: 0.726; n = 5), and Holocene age podsolic sand deposits (0.723). These data suggest that there has been substantial flux from this group of deposits to the caves, as would be expected considering prevailing winds. This relationship is further supported by a strong correlation between many trace elements, including Ti, Zr, Ce, and Y; however, variations in clay mineralogy suggest that the fine silt-dominated lunettes and Padthaway RBEs were not significant contributors to the cave deposits. Hence, the detritus entering the caves was more than likely from areas proximal to the cave entrance and was dominated by medium grain-sized materials. Major regional deposits, including the coarser-grained, calcite-rich Bridgewater Formation sands, basalts from the lower SE, Padthaway Horst granites, Gambier limestone, and metamorphics from the Adelaide geosyncline show minimal correlation in 87Sr/86Sr ratios, elemental geochemistry, and mineralogy with the cave sediments, and are discounted as significant sources. In comparison, 87Sr/86Sr ratios for the Coorong silty sands (0.717-0.724), Lower Murray sands (0.727-0.730), and the medium size silt component of the Murray-Darling River system (0.71-0.72), compare favourably with the cave sediments. This relationship is further supported by similarities in elemental chemistry and mineralogy. Thus, much of the strontium-rich silt that is now located in the Naracoorte Cave sediments likely originated from the Murray-Darling basin. Over time, this material has been transported to the SE of South Australia, where it mixed with the medium sand component of the regressive dune ridge sequence, locally derived organic matter, limestone fragments, and fossil material to produce the unique deposits that we see evident in many of the chambers of the Naracoorte Cave system today

Lithification of peritidal carbonates by continental brines at Fisherman Bay, South Australia, to form a megapolygon/spelean limestone association, 1982, Ferguson J, Burne Rv, Chambers La,
Lithification, which commenced less than 3000 yrs BP is still active, and has formed a cavernous limestone containing megapolygons, tepees, and speleothems including pisoliths, floe aragonite, and aragonite pool deposits. The emerging waters evolved from low alkalinity waters of Pleistocene sand and clay coastal plain aquifers which passed through an underlying Tertiare marine carbonate aquifer, have high P CO2 , total carbonate, Ca, and sulfate concentrations. They are close to saturation with respect to aragonite, and their mMg (super 2) /mCa (super 2) ratios approach or exceed the critical aragonite precipitation value. Features which diagnose ancient examples of this process: primary aragonitic cements with high mSr (super 2) /mCa (super 2) values; nonmarine delta 34 S values in gypsum; two superimposed networks of surface polygons, one delineated by extensional boundaries, the other by tepees; high-water vadose-zone isopachous grain cements; interconnected, speleothem-lined cavities; and the presence of evaporites only in surface sediments. Possible ancient examples are recognized in West Texas, Lombardy, and the Atlas Mountains. The areal extent of each of these deposits suggests that the process may be a geologically important feature, and its products may be diagnostic of semi-arid or arid-zone paralic sedimentation.--Modified journal abstract

Petrogenesis of Cenozoic, temperate water calcarenites, South Australia; a model for meteoric/shallow burial diagenesis of shallow water calcite sediments, 1989, James Noel P. , Bone Yvonne,

Southeast South Australia has large reserves of potable groundwater, generally close to the surface. European settlement has had a major impact on groundwater quality due to the presence of extensive karst in the unconfined aquifer. Historically, industries such as cheese factories were often sited close to karst features (e.g. caves and sinkholes) because they provided a convenient means of waste disposal. Although most have long since closed, they have left a legacy of pollution plumes of varying sizes. In Mount Gambier, the main regional centre, the presence of both exposed and subterranean karst features provided a ''perfect system'' for the disposal of stormwater. Prior to the provision of a sewerage system within Mount Gambier, all toilet and household wastewaters were disposed to ground. These activities and the subsequent problems that began emerging in the 1960s have led to a concerted effort over the last 20 years to change the philosophy of waste disposal and to generate an understanding and responsibility by those who live in the region and depend on groundwater for the major part of their water supply. Mount Gambier's water supply comes from the Blue Lake. Groundwater inflow from a highly karstic Tertiary limestone aquifer provides 90% of the recharge to the Blue Lake. The lake is a high-value resource in a high-risk environment and in order to minimize this risk, a water-quality management plan for the lake is currently being developed

The South-East Karst Province of South Australia is an extensive area of low relief with dolines, cenotes, uvalas, and a variety of cave types developed in the soft, porous, flat-lying Tertiary Gambier Limestone and also as syngenetic karst in the overlying calcarenite dunes of the Pleistocene Bridgewater Formation. The most spectacular surface karst features are the large collapse dolines, especially those that extend below the water table to form cenotes. Shallow swampy hollows occur in superficial Quaternary sediments. These are an enigmatic feature of the Bool Region, where all gradations appear to occur between definite karst dolines and nonkarstic hollows. Some depressions may be polygenetic-involving a combination of: (1) primary depositional hollows on coastal flats or in dune fields, (2) deflation, and (3) karst solution and subsidence. There are extensive underwater cave systems in the southern part of the province, and the bulk of the cave development there may well lie below the present water table, although these systems would have been at least partly drained during the lower sea levels of the last glacial period. Systematic variations within the province reflect differences in the parent rock types, the extent and nature of the cover and, most importantly, the hydrology-in particular the depth to the water table and its gradient

Evaporites, brines and base metals: What is an evaporite? Defining the rock matrix, 1996, Warren J. K. ,
This paper, the first of three reviews on the evaporite-base-metal association, defines the characteristic features of evaporites in surface and subsurface settings. An evaporite is a rock that was originally precipitated from a saturated surface or near-surface brine in hydrological systems driven by solar evaporation. Evaporite minerals, especially the sulfates such as anhydrite and gypsum, are commonly found near base-metal deposits. Primary evaporites are defined as those salts formed directly via solar evaporation of hypersaline waters at the earth's surface. They include beds of evaporitic carbonates (laminites, pisolites, tepees, stromatolites and other organic rich sediment), bottom nucleated salts (e.g. chevron halite and swallow-tail gypsum crusts), and mechanically reworked salts (such as rafts, cumulates, cross-bedded gypsarenites, turbidites, gypsolites and halolites). Secondary evaporites encompass the diagenetically altered evaporite salts, such as sabkha anhydrites, syndepositional halite and gypsum karst, anhydritic gypsum ghosts, and more enigmatic burial associations such as mosaic halite and limpid dolomite, and nodular anhydrite formed during deep burial. The latter group, the burial salts, were precipitated under the higher temperatures of burial and form subsurface cements and replacements often in a non-evaporite matrix. Typically they formed from subsurface brines derived by dissolution of an adjacent evaporitic bed. Because of their proximity to 'true' evaporite beds, most authors consider them a form of 'true' evaporite. Under the classification of this paper they are a burial form of secondary evaporites. Tertiary evaporites form in the subsurface from saturated brines created by partial bed dissolution during re-entry into the zone of active phreatic circulation. The process is often driven by basin uplift and erosion. They include fibrous halite and gypsum often in shale hosts, as well as alabastrine gypsum and porphyroblastic gypsum crystals in an anhydritic host. In addition to these 'true' evaporites, there is another group of salts composed of CaSO4 or halite. These are the hydrothermal salts. Hydrothermal salts, especially hydrothermal anhydrite, form by the subsurface cooling or mixing of CaSO4- saturated hydrothermal waters or by the ejection of hot hydrothermal water into a standing body of seawater or brine. Hydrothermal salts are poorly studied but often intimately intermixed with sulfides in areas of base-metal accumulations such as the Kuroko ores in Japan or the exhalative brine deeps in the Red Sea. In ancient sediments and metasediments, especially in hydrothermally influenced active rifts and compressional belts, the distinction of this group of salts from 'true' evaporites is difficult and at times impossible. After a discussion of hydrologies and 'the evaporite that was' in the second review, modes and associations of the hydrothermal salts will be discussed more fully in the third review

A tentative classification of paleoweathering formations based on geomorphological criteria, 1996, Battiauqueney Y,
A geomorphological classification is proposed that emphasizes the usefulness of paleoweathering records in any reconstruction of past landscapes. Four main paleoweathering records are recognized: 1. Paleoweathering formations buried beneath a sedimentary or volcanic cover. Most of them are saprolites, sometimes with preserved overlying soils. Ages range from Archean to late Cenozoic times; 2. Paleoweathering formations trapped in karst: some of them have buried pre-existent karst landforms, others have developed simultaneously with the subjacent karst; 3. Relict paleoweathering formations: although inherited, they belong to the present landscape. Some of them are indurated (duricrusts, silcretes, ferricretes,...); others are not and owe their preservation to a stable morphotectonic environment; 4. Polyphased weathering mantles: weathering has taken place in changing geochemical conditions. After examples of each type are provided, the paper considers the relations between chemical weathering and landform development. The climatic significance of paleoweathering formations is discussed. Some remote morphogenic systems have no present equivalent. It is doubtful that chemical weathering alone might lead to widespread planation surfaces. Moreover, classical theories based on sea-level and rivers as the main factors of erosion are not really adequate to explain the observed landscapes

Microbial communities associated with hydromagnesite and needle-fiber aragonite deposits in a karstic cave (Altamira, northern Spain), 1999, Canaveras Jc, Hoyos M, Sanchezmoral S, Sanzrubio E, Bedoya J, Soler V, Groth I, Schumann P, Laiz L, Gonzalez I, Sainzjimenez C,
Microbial communities, where Streptomyces species predominate, were found in association with hydromagnesite, Mg-5(CO3)(4)(OH)(2). 4H(2)O, and needle-fiber aragonite deposits in an Altamira cave. The ability to precipitate calcium carbonate in laboratory cultures suggests that these and other bacteria present in the cave may play a role in the formation of moonmilk deposits

Dolines of the Pleistocene dune calcarenite terrain of western Eyre Peninsula, South Australia: a reflection of underprinting?, 2000, Twidale C. R. , Bourne J. A. ,
A field of Middle and Late Pleistocene coastal foredunes occupies much of western Lyre Peninsula, South Australia. The rolling surface reflects the morphology of the stacks of calcarenite dunes that underlie the area. Hardpan calcrete is well developed in relation to the present, as well as to earlier dune surfaces. The region is a typical karst in that surface drainage is lacking. There are a few shallow and short caves but solution pipes and dolines are abundantly developed. Some dolines, including several of the larger forms occur high in the local topography and are also aligned in groups. They are attributed to underprinting, to the diversion of groundwaters into fractures in the pre-Pleistocene basement and the concentration of solution in the limestone above such zones. Low permeability calcrete horizons within the dune sequence have probably disturbed groundwater circulation and also form a stable framework preventing major collapse, and preserving both dolines and caves. (C) 2000 Elsevier Science B.V. All rights reserved

Mid-Pleistocene cave fills, megafaunal remains and climate change at Naracoorte, South Australia: towards a predictive model using U-Th dating of speleothems, 2000, Moriarty Kevin C. , Mcculloch Malcolm T. , Wells Roderick T. , Mcdowell Matthew C. ,

Formation of Willemite in Hydrothermal Environments, 2003, Brugger J, Mcphail Dc, Wallace M, Waters J,
Willemite (zinc silicate) is the main zinc mineral in some carbonate-hosted ore deposits (e.g., Franklin, New Jersey; Vazante, Brazil; Beltana, South Australia; Kabwe, Zambia). Recent interest in these unconventional zinc deposits has increased because of high zinc grades that exceed 40 wt percent, relatively low environmental impact of ore processing owing to the lack of acid-generating sulfides in the waste, and advances in ore processing technologies. In the past, most metallogenic studies proposed formation of willemite deposits by supergene or hypogene alteration of preexisting sulfide deposits. However, recent data on the Vazante, Beltana, and Kabwe deposits indicate willemite crystallization at temperatures in excess of 150{degrees}C, raising the possibility of primary precipitation from hydrothermal fluids. We use numerical geochemical modeling to examine the formation of willemite under hydrothermal conditions. Activity-activity diagrams reveal that, in the presence of dissolved sulfur and quartz, willemite instead of sphalerite will precipitate under oxidizing (e.g., hematite-stable, sulfate-predominant) and alkaline (pH higher than K feldspar-muscovite-quartz) conditions. Willemite also becomes more stable, relative to sphalerite, at high temperature, and willemite can coexist with magnetite at 300{degrees}C. The stabilities and solubilities of sphalerite, willemite, smithsonite, hydrozincite, and zincite were calculated for wide ranges of temperature (25{degrees}-300{degrees}C), chloride concentration, dissolved sulfur and carbon concentrations, pH, quartz saturation, and oxidation potential. Plots of the solubility of the different minerals as a function of two variables (e.g., temperature and redox state; pH and redox state) allow us to predict the effects of changing chemical conditions, which in turn permits an estimate of the efficiency of particular precipitation processes. Cooling is an effective process for precipitating sphalerite but not willemite, whereas pH increase (e.g., by acidic fluids reacting with carbonates) is effective for precipitating willemite but not sphalerite. Dynamic geochemical models that simulate physicochemical processes are used to understand the formation of the Beltana willemite deposit in the Adelaide geosyncline of South Australia. This small, high grade deposit (850,000 t at 36% Zn) is hosted in dolomite of the Cambrian Ajax Limestone, next to a tectonic contact with the diapiric, halite-bearing clastic sediments of the Callanna Group. The orebody is associated with hematite alteration and is characterized by the total absence of sulfides; willemite is the only zinc ore mineral, and the arsenate hedyphane (Ca2Pb3[AsO4]3Cl) is the main lead mineral. The model results show that willemite will precipitate in response to water-rock interaction and fluid mixing processes at temperatures above 120{degrees}C. The presence of arsenate in the hydrothermal fluid is likely to have been important at Beltana; in arsenate-absent models sulfate is reduced to sulfide by the precipitation of ferrous iron as hematite, resulting in the precipitation of sphalerite and galena. In contrast, in models including arsenate the reduction of sulfate to sulfide is inhibited and willemite is predicted to precipitate

Geology of the Beltana Willemite Deposit, Flinders Ranges, South Australia, 2003, Groves Iain M. , Carman Cris E. , Dunlap W. James,
Beltana is a high-grade hypogene willemite deposit hosted in Lower Cambrian carbonate rocks in the Arrowie basin, northern Flinders Ranges, South Australia. It is situated adjacent to a major growth fault on the basin margin. Ooid grainstone units of the Woodendinna Dolomite and units of Archaeocyathid-rich Wilkawillina Limestone are the main host lithologies. Lead minerals in subeconomic quantities are also present in karstic collapse breccias surrounding the willemite orebodies. Mineralization is structurally controlled and associated with brecciation and extensive hematite-rich hydrothermal zincian dolomitization. Ore minerals include willemite and coronadite with lesser mimetite, hedyphane, and smithsonite. Late-stage gangue minerals include manganocalcite, dolomite, and minor quartz. The texture of willemite is heterogeneous, resulting from various depositional mechanisms such as partial to massive replacement of the carbonate host rock, internal sedimentation, fracture fill, brecciation, and vein fill. On the periphery of the deposit, smithsonite formed by weathering of willemite. Beltana is centered on a karstic collapse breccia that extends at least 100 m vertically, formed in part through corrosion by acidic ore solutions. The geochemical signature of the orebody includes high levels of Zn, Pb, Cd, As, and Mn. Notably, silver is absent from the deposit and sulfur concentrations are low (<20 ppm). Fluid inclusion studies yield a low minimum temperature range of ore deposition between 50{degrees} and 170{degrees}C. K-Ar dating of coronadite associated with the willemite orebody indicates an age of formation of ~ 435 {} 5 Ma. Premining resources of willemite ore were 850,000 t at 36 percent Zn, and an associated body of subeconomic lead contained more than 800,000 t at 8.9 percent Pb, 3.9 percent Zn and 1 percent As. The deposit has some similarities with Mississippi Valley-type deposits but differs in ore and alteration mineral assemblages

Spatial and temporal variability of water salinity in an ephemeral, arid-zone river, central Australia, 2005, Costelloe Jf, Grayson Rb, Mcmahon Ta, Argent Rm,
This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (< 200 mg 1(-1)). In the salt-affected reaches, flood pulses become increasingly saline during their recession. It is hypothesized that leakage from the Great Artesian Basin deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile. Copyright (c) 2005 John Wiley & Sons, Ltd

Results 1 to 13 of 13
You probably didn't submit anything to search for