Hello everyone!
I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")
There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found:
Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum
The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...
Did you know?
That pore velocity is see velocity, average interstitial.?
The maximum freshwater well pumping flowrate, from an underground karst channel, is defined as function of the channel length, between the well and the submarine spring, in which the channel is terminated. The differential equations that describe the phenomenon of saltwater intrusion into the channel have been analytically solved. The derived dimensionless graphs are suitable for practical applications. Their use can lead to a freshwater exploitation up to 90% of the submarine spring discharge without brackishnesh of the well freshwater
Nuclear magnetic resonance imaging (NMRI) is applied to noninvasively measure flow and dissolution patterns in natural, rough-walled, water-saturated halite fractures. Three-dimensional images of water density and flow velocity acquired with NMRI allow quantification of the developing fracture morphology and flow patterns. The flow patterns are correlated strongly to the local apertures and the large-scale wall roughness. The correlations of the dissolution patterns to the fracture morphology, flow patterns, and mineralogical composition of the rock matrix are a function of the overall dimensionless Damköhler number. At high Damköhler numbers the dissolution patterns are dominated by the flow structure. In addition, at high Damköhler numbers buoyancy (stratified flow) becomes important. In such cases the dissolution patterns also depend on the orientation and elevation of the fracture walls, resulting in preferential upward dissolution. At low Damköhler numbers the dissolution patterns depend mainly on the mineralogical composition of the rock matrix. These findings suggest that coupled flow and dissolution processes are much more complex and unpredictable than commonly assumed, even under simplified conditions.