Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That wetted perimeter is the perimeter over which flowing water is in actual contact with the channel walls and bottom [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for tufa deposition (Keyword) returned 7 results for the whole karstbase:
Karst water chemistry - Limestone Ranges, Western Australia, 1990, Ellaway M. , Smith D. I. , Gillieson D. S. , Greenaway M. A.

Detailed chemical and physical analyses are presented for 42 karst waters (springs, groundwater) sampled in the Kimberley region in northern Western Australia (Devonian Reef complex) during May '88. A general pattern of physical and chemical effects (e.g. tufa deposition) was found.

Louie Creek is a karst springfed stream situated in the seasonally humid tropics of northwest Queensland, Australia. It rises as a series of small exsurgences along the eastern edge of the Barkly Tableland. As it enters the lowlands of the Carpentaria plain, the creek deposits tufa which produces a series of cascades. This modern tufa extends discontinuously for about 1.5 km. A series of ancient tufas, in places lying adjacent to sites of modern deposition, extends discontinously for about 8 km downstream. At least two ancient tufa units are preserved at one location, Little Indarri site. The older unit comprises a sequence of well-preserved barrages with an orientation transverse to present-day stream flow. In places, erosion has reduced these barrages to their calcrete substrate. The older tufa is overlain in places by sediment which has become cemented to form a second calcrete unit. This sediment is in turn succeeded by the younger ancient tufa. Subsequent river incision has removed part of the sediment from the older unit and exposed several contact points between the ancient tufa and calcrete units. Radiocarbon dating of the Little Indarri site tufas, as well as other ancient Louie Creek units, yielded apparent ages ranging from approximately 30 to approximately 14 ka BP, suggesting that conditions were sufficiently wet during the period immediately preceding and throughout the Last Glacial Maximum for tufa deposition to occur. However, ancient tufa formation occurred during a phase of net river aggradation. There is geomorphic evidence that such aggradation was a result of an increased sediment supply to the fluvial system, most likely in response to conditions drier than present. Results from studies elsewhere in the region support such a Late Pleistocene trend. Incision of Louie Creek, which postdates the youngest of the dated ancient tufas, is most likely to have resulted from a shift to wetter conditions during the early Holocene

Hydrochemical and hydrodynamical investigations are presented to explain tufa deposition rates along the flow path of the Huanglong Ravine, located in northwestern Sichuan province, China, on an altitude of about 3400 m asl. Due to outgassing of CO2 the mainly spring-fed stream exhibits, along a valley of 3.5 km, calcite precipitation rates up to a few mm/year. We have carried out in situ experiments to measure calcite deposition rates at rimstone dams, inside of pools and in the stream-bed. Simultaneously, the downstream evolution of water chemistry was investigated at nine locations with respect to Ca2 Mg2, Na, Cl-, SO42-, and alkalinity. Temperature, pH, and conductivity were measured in situ, while total hardness, Ca-T, and alkalinity have been determined immediately after sampling, performing standard titration methods. The water turned out to be of an almost pure Ca-Mg-HCO3 type. The degassing of CO2 causes high supersaturation with respect to calcite and due to calcite precipitation the Ca2 concentration decreases from 6 . 10(-3) mole/l upstream down to 2.5 . 10(-3) mole/l at the lower course. Small rectangular shaped tablets of pure marble were mounted under different flow regimes, i.e., at the dam sites with fast water flow as well as inside pools with still water. After the substrate samples had stayed in the water for a period of a few days, the deposition rates were measured by weight increase, up to several tens of milligrams. Although there were no differences in hydrochemistry, deposition rates in fast flowing water were higher by as much as a factor of four compared to still water, indicating a strong influence of hydrodynamics. While upstream rates amounted up to 5 mm/year, lower rates of about 1 mm/year were observed downstream. Inspection of the marble substrate surfaces by EDAX and SEM (scanning electron microscope) revealed authigeneously grown calcite crystals of about 10 mu m. Their shape and habit are indicative of a chemically controlled inorganic origin. By applying a mass transfer model for calcite precipitation taking into account the reaction rates at the surface given by Plummer et al. (1978), slow conversion of CO2 into H and HCO3-, and diffusional mass transport across a diffusion boundary layer, we have calculated the deposition rates from the hydrochemistry of the corresponding locations. The calculated rates agree within a factor of two with the experimental results. Our findings confirm former conclusions with respect to fast flow conditions: reasonable rates of calcite precipitation can be estimated in reducing the PWP-rate calculated from the chemical composition of the water by a factor of about ten, thus correcting for the influence of the diffusion boundary layer

Active deposition of calcareous tufa in Wessex, UK, and its implications for the 'late-Holocene tufa decline', 1998, Baker A, Simms Mj,
Recent publications have suggested that deposition of calcareous tufa and travertine in the British Isles has declined since the mid-Holocene. Several causal mechanisms have been postulated which include changes in both palaeoenvironmental and palaeoecological conditions. Results presented here for actively depositing tufa in the Wessex region of southwest England suggest that there has been significant under reporting of contemporary tufa deposition. This factor must be taken into consideration in any investigation of a possible tufa decline in the late Holocene. Geochemical and environmental conditions at 26 tufa deposition sites are reported in order better to elucidate the climatic and environmental factors which constrain contempor ary tufa deposition, and to achieve a better understanding of the controls on Holocene deposition

Geomorphological controls on tufa deposition at Nash Brook, South Wales, 1999, Viles Heather, Pentecost Allan

Physical Mechanisms of River Waterfall Tufa (Travertine) Formation, 2001, Zhang David Dian, Zhang Yingjun, Zhu An, Cheng Xing,
Waterfall tufa is widely distributed around the world, especially in tropical and subtropical karst areas. In these areas river water is generally supersaturated with respect to calcite, and the precipitation occurs mainly at waterfall and cascade sites. Development of waterfall tufa has been described as simply being the result of water turbulence. We believe, however, that three physical effects can lead to tufa deposition at waterfall sites: aeration, jet-flow, and low-pressure effects. The three physical effects are induced by two basic changes in the water: an accelerated flow velocity, and enlargement of the air-water interface area. These two changes increase the rate of CO2 outgassing and the SIc, so that a high degree of supersaturation is achieved, which then induces calcite precipitation. These 'waterfall effects' have been simulated in laboratory and field experiments, and each of them can accelerate, or trigger, calcite precipitation. Field measurements of river water chemistry also show that tufa deposition occurred only at waterfall sites. In these experiments and observations, waterfall effects play the most important role in triggering and accelerating CO2 outgassing rates. Field and laboratory observations indicate that plants and evaporation also play important roles in tufa formation. Growth of algae and mosses on tufa surfaces can provide substrates for calcite nucleation and can trap detrital calcite, accelerating tufa deposition. However, the prerequisite for such deposition at waterfall sites is a high degree of supersaturation in river water, which is mainly caused by waterfall effects. Evaporation can lead to supersaturation in sprays and thin water films at a waterfall site and cause the precipitation of dissolved CaCO3, but the amount of such deposition is relatively small

Carbon fluxes in Karst aquifers: Sources, sinks, and the effect of storm flow, 2013, White William B.

An effective carbon loading can be calculated from measured alkalinity and pH of karst waters. The carbon loading is independent of the degree of saturation of the water and does not depend on the water being in equilibrium with the carbonate wall rock. A substantial data base of spring water analyses accumulated by students over the past 40 years has been used to probe the CO2 generation, transport, and storage in a variety of drainage basins that feed karst springs. Carbon loading in the water exiting karst drainage basins depends on the rate of CO2 generation in the soils of the catchment areas and on the partitioning between CO2 dissolved in infiltration water and CO2 lost by diffusion upward to the atmosphere. For any given drainage basin there are also influences due to vegetative cover, soil type, and the fraction of the water provided by sinking stream recharge. Losses of CO2 back to the atmosphere occur by speleothem deposition in air-filled caves, by degassing of CO2 in spring runs, and by tufa deposition in spring runs. There are seasonal cycles of CO2 generation that relate growing season and contrasts in winter/summer rates of CO2 generation. Overall, it appears that karst aquifers are a net, but leaky, sink for atmospheric CO2

Results 1 to 7 of 7
You probably didn't submit anything to search for