Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That gaining stream is a stream or reach of a stream whose flow is being increased by inflow of ground water [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for wormhole (Keyword) returned 5 results for the whole karstbase:
Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock, 2003,

The evolution of hydraulic conductivity and flow patterns, controlled by simultaneous  precipitation and dissolution in porous rocks, was examined in a series of laboratory  experiments. Linear flow experiments were performed in columns of crushed calcareous  sandstone by injecting different concentrations of HCl/H2SO4 mixtures at various flow  rates. The effect of simultaneous calcium carbonate dissolution and gypsum precipitation  was analyzed. Changes in head gradient, recorded at specific time intervals during the  experiments, were used to calculate overall hydraulic conductivity of each column. The  effluent acid was analyzed for Ca2+ and SO4  2_ concentrations in order to calculate porosity  changes during the experiments. After each experiment, the rock sample was retrieved and  sectioned in order to study the pore space geometry, micromorphology, and mineral  concentrations. Arange of injected H+/SO4  2_ ratios and flow rates was identified which leads  to oscillations in the effective hydraulic conductivity of the evolving carbonate rock  samples. Because the dissolution of calcium carbonate is a mass transfer limited process,  higher flow rates cause a more rapid dissolution of the porous medium; in such cases, with  dissolution dominating, highly conductive flow wormholes were observed to develop.  At slower flow rates, no wormhole formation was observed, but the porosity varied in  different parts of the columns. Analysis of the sectioned parts of the column, after each  experiment, showed that total porosity increased significantly by dissolution of carbonate  mineral near the inlet of the column and decreased along the interior length of the column by  gypsum precipitation. These findings are in qualitative accordance with conceptual  understanding of such phenomena


Wormhole formation in dissolving fractures, 2009, Szymczak P. , Ladd A. J. C.

We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice-Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate and geometrical properties of the fracture were investigated, and the optimal conditions for wormhole formation determined.


The initial stages of cave formation: Beyond the one-dimensional paradigm, 2011, Szymczak Piotr, Ladd Anthony J. C.

The solutional origin of limestone caves was recognized over a century ago, but the short penetration length of an undersaturated solution made it seem impossible for long conduits to develop. This is contradicted by field observations, where extended conduits, sometimes several kilometers long, are found in karst environments. However, a sharp drop in the dissolution rate of CaCO3 near saturation provides a mechanism for much deeper penetration of reactant. The notion of a “kinetic trigger” – a sudden change in rate constant over a narrow concentration range – has become a widely accepted paradigm in speleogenesis modeling. However, it is based on one-dimensional models for the fluid and solute transport inside the fracture, assuming that the dissolution front is planar in the direction perpendicular to the flow. Here we show that this assumption is incorrect; a planar dissolution front in an entirely uniform fracture is unstable to infinitesimal perturbations and inevitably breaks up into highly localized regions of dissolution. This provides an alternative mechanism for cave formation, even in the absence of a kinetic trigger. Our results suggest that there is an inherent wavelength to the erosion pattern in dissolving fractures, which depends on the reaction rate and flow rate, but is independent of the initial roughness. In contrast to one-dimensional models, two-dimensional simulations indicate that there is only a weak dependence of the breakthrough time on kinetic order; localization of the flow tends to keep the undersaturation in the dissolution front above the threshold for non-linear kinetics.

Research Highlights
- A kinetic trigger is not a prerequisite for limestone cave formation. - The added spatial dimension has a larger impact on breakthrough times than a kinetic trigger. - Planar dissolution front in a fracture is unstable to infinitesimal perturbations. - The most unstable wavelength depends on reaction kinetics and flow rate. - The instability leads to the formation of rapidly advancing, wormhole-like channels.


Influence of the f low rate on dissolution and precipitation features during percolation of CO 2 - rich sulfate solutions through fractured limestone samples , 2015,

Calcited issolution and  gypsum precipitation is expected to occur  when injecting CO2  in  a limestone reservoir with sulfate - rich resident brine. If the reservoir is fractured, These reactions will take place mainly in the fractures, which serve as preferential paths for fluid  flow. As a consequence, the geometry of the fractures will vary leading to changes  in their hydraulic and transport properties. In this study, a set of percolation  experiments  which  consisted of injecting CO 2 - rich solutions through fractured  limestone  cores were performed under P  =  150 bar and  T  =  60  ºC .  Flow rate s ranging from 0.2 to 60 mL/ h and sulfate - rich and sulfate - free solutions  were used. Variation in fracture volume induced by calcite dissolution and  gypsum precipitation was measured by X - ray computed microtomography  (XCMT) and aqueous chemistry. An increase in flow rate led to  an increase in  volume of dissolved limestone per unit of  time , which indicated that the calcite dissolution rate in the fracture  was transport  controlled. Moreover, the dissolution pattern varied from face dissolution to wormhole formation  and uniform dissolution by increasing the flow rate (i.e.,  Pefrom 1 to 346 ). Fracture permeability always increased and depended on the type of dissolution pattern.


Initial conditions or emergence: What determines dissolution patterns in rough fractures?, 2015,

Dissolution of fractured rocks is often accompanied by the formation of highly localized flow paths. While the fluid flow follows existing fractures in the rock, these fissures do not, in general, open uniformly. Simulations and laboratory experiments have shown that distinct channels or “wormholes”develop within the fracture, from which a single highly localized flow path eventually emerges. The aim of the present work is to investigate how these emerging flow paths are influenced by the initial aperture field. We have simulated the dissolution of a single fracture starting from a spatially correlated aperture distribution. Our results indicate a surprising insensitivity of the evolving dissolution patterns and flow rates to the amplitude and correlation length characterizing the imposed aperture field. We connect the similarity in outcomes to the self-organization of the flow into a small number of wormholes, with the spacing determined of the longest wormholes. We have also investigated the effect of a localized region of increased aperture on the developing dissolution patterns. A competition was observed between the tendency of the high-permeability region to develop the dominant wormhole and the tendency of wormholes to spontaneously nucleate throughout the rest of the fracture. We consider the consequences of these results for the modeling of dissolution in fractured and porous rocks.


Results 1 to 5 of 5
You probably didn't submit anything to search for