Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That coefficient of compressibility is compressibility is the aptitude of the soil to be deformed. it is expressed by means of a coefficient which is the ratio between a void ratio decrease from eo to e and an increase in effective stress. the value a v = e0-e)p represents the coefficient of compressibility for the range p0 to p0 + p.units are usually cm2/kg [21]. see also coefficient of volume compressibility.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for ground-water (Keyword) returned 116 results for the whole karstbase:
Showing 16 to 30 of 116
Stone forest aquifers comprise an important class of shallow, unconfined karstic aquifers in the south China karst belt. They occur under flat areas such as floors of karst depressions, stream valleys, and karst plains. The frameworks for the aquifers are the undissolved carbonate spires and ribs in epikarst zones developed on carbonate strata. The ground water occurs within clastic sediments which infill the dissolution voids. The aquifers are thin, generally less than 100 meters thick, and are characterized by large lateral permeabilities and small storage. The result is that the aquifers are difficult to manage because recharge during the rainy season moves rapidly out of the aquifers. Water levels fall sharply as the dry season progresses and the ground-water supply falls off accordingly. The magnitude and duration of the seasonal recharge pulse that replenishes the stone forest aquifers have been severely impacted by massive post-1958 deforestation in the south China karst region. Water that was formerly retained beyond the wet season in the forested uplands, later to be released to the stone forest aquifers under the lowland plains, now passes quickly through the system during the wet season. The loss of this seasonal upland storage has resulted in both a reduction in the volume of recharge to the lowland stone forest aquifers and a shortening of the seasonal recharge event. The result is accelerated water-level declines in the stone forest aquifers as the dry season progresses which, in turn, causes premature dewatering of wells and decreased spring discharges. This response is compounded by increased ground-water withdrawals as the people attempt to offset the declining supply. Management of the total water-supply system requires not only tinkering with the aquifer, but massive reforestation efforts to restore dry season water retention in the upland parts of the watersheds

Spectacular towers (average 130 m high) are to be seen in the Lijiang plain near Guilin in middle and upper Devonian limestone forming a downthrown structural panel surrounded by the high relief of a cockpit karst. The limestone was fractured by at least three Triassic and Tertiary tectonic episodes. Statistical analysis of the altitudes of tower summits shows that they are distributed according to a log-normal law with a well marked mode at 250-280 m. This mode is very similar to that of the depression altitudes of the cockpit karst. It was deduced that tower summits and cockpit bottoms show that there was an ancient, relatively flat surface which was the basic level for flow in the surrounding karstic relief (water table at ground level). Fall in this ground water caused preferential karstic breakdown in very fractured zones, leaving the stronger blocks. This subsidence must have taken place in stages, as is shown by Pliocene and lower Quaternary fossil cavities at various altitudes of the towers. Observation of fracturing in the field, in aerial photographs and satellite images show that the edges of the towers are mainly transverse faults with sub-vertical planes

Hrad Vallis is located in the transition zone between Elysium Mons and Utopia Planitia. Near its origin, at the northern edge of Elysium lavas, Hrad Vallis is characterized by a low-sinuousity channel within a north-northwest-trending, broad, flat-floored valley. A nearby flat-floored valley is parallel to the Hrad trend and parallel to elongate depressions, fissures, and faults in the region. An apparent hierarchy of landforms provides insight into the origin of the features associated with Hrad Vallis. The sequence leading to the development of Hrad Vallis consists of the following (1) formation of isolated depressions as either karst depressions or thermokarst valleys along faults and fissures in response to circulating ground water; (2) expansion of depressions along structural trends to coalesce as composite valleys, and (3) incision of a channel on the floor of Hrad valley by continued discharge of water from the subsurface after its initial formation by nonfluvial processes. Mud flows, polygonally fractured terrain, and chaotic terrain near the head of the major valleys suggest thixotropic behavior of saturated, clay-rich materials. An extended period of time is indicated during which freely circulating water existed on id beneath the surface of Mars. Karst and thermokarst processes imply very different climatic regimes and different host materials. The presence of karst topography implies extensive deposition of carbonates or other soluble rocks, whereas the presence of thermokarst basins implies the existence of porous, water/ice-saturated clastic or volcaniclastic materials

Upper Sinking Cove, dissecting the eastern escarpment of the Cumberland Plateau, is characterized by a multiple aquifer, predominantly vadose hydrologic system with minor surface components. There is a central trunk channel along the axis of the cove and a network of independent tributaries. Aquitards within the limestones, particularly Hartselle Formation shales, have influenced both cave and surface landform development by perching ground waters and slowing the vertical growth of closed depressions. Long-term solutional denudation in the portion of the cove underlain by limestones (40 per cent) is an estimated 56 mm per 1000 years, suggesting that karst development began 15-16 million years ago. Despite lower soil CO2 and spring water hardness, 61 per cent of annual denudation occurs in the six winter months when 76 per cent of yearly runoff occurs. Landform development in Upper Sinking Cove appears to have begun as stream erosion carved a valley first in the sandstone caprock of the escarpment and later in the underlying Pennington Formation limestones containing numerous shale layers which promoted surface stream flow. Eventually stream erosion exposed the massive Bangor limestones which allowed deep ground water flow. Surface streams were pirated underground with the eventual formation of the chain of three closed depressions which constitute Upper Sinking Cove

ROADWAY DESIGN IN KARST, 1993, Fischer Ja, Fischer Jj, Greene Rw,
To minimize costs in conventional roadway design, as much low or valley areas as possible are utilized. In many areas of the eastern United States, these valleys are filled with carbonate rocks. Excavation is used to minimize grades-this removes protective overburden or rock cover over cavities; fill also is used to minimize grades-this can increase loads on marginally stable soil arches or rock cavity roofs. Surface water runoff is directed toward low areas-the low areas are likely zones of weakness or solutioning, thereby increasing the potential for sinkhole development and providing an opportunity for groundwater contamination, and remediation usually consists of blindly filling rock cavities, thus either channeling the still-contaminated surface flows someplace else or perhaps eliminating useful ground water recharge conduits. The authors suggest that the key to proper design, construction, and remediation for roadways planned in karst is to understand the geologic and hydrogeologic setting of the route(s) or locale, perform true geotechnical engineering design, and remediate with an understanding of the overall engineering geologic, hydrogeologic, and environmental picture

The Rospo Mare oil field is located in the Adriatic Sea, 20 km off the Italian coast. The reservoir lies at a depth of 1300 m and consists of a paleokarst oi Oligocene to Miocene age which developed within Cretaceous limestones, now covered by 1200 m of Mio-Pliocene sequences. The oil column is about 140 m 8 high. The karstic nature of the reservoir was identified through vertical, cored drill holes which allowed us to analyse the various solution features and the sedimentary infilling (speleothems, terra rossa, marine clays), as well as their vertical distribution. Erosion morphology at the top of the karst is highly irregular, including in particular paleovalleys as well as many pit-shaped sink holes. Detailed geophysical knowledge of that morphology helped to optimize the development of the field through horizontal drilling. Observations concerning the upper part of the reservoir were compared to a palaeokarst of the same age, outcropping widely onshore, in quarries located nearby. The Rospo Mare paleokarst is an integral part of the ante Miocene paleokarst assemblages of the periphery of the Mediterranean which were formed in tropical conditions. Only the fractures enhanced by meteoric water during the formation of the karat are important for reservoir connectivity. During the formation of the karst there were several phases of dissolution and infilling which modified the geometry of the open fissures and only these fractures play an important role in the reservoir drainage. Vertically we can distinguish three very different zones from top to bottom: at the top the epikarst (0-35 m) in a zone of extension. All the fractures have been enlarged by dissolution but the amount of infilling by clay is substantial. The clays are derived either from alteration of the karat fabric or by deposition during the Miocene transgression; the percolation zone (15-45 m) is characterized by its network of large fractures vertically enlarged by dissolution which corresponds to the relict absorption zones in the paleokarst. These fractures, which usually have a pluridecametric spacing, connect the epi-karst with the former sub-horizontal river system. This zone has been intersected by the horizontal wells during the field development. In this zone there are local, horizontal barriers oi impermeable clay which can block vertical transmissibility. In these low permeability zones the vertical fractures have not been enlarged due to dissolution hence the horizontal barrier; the zone of underground rivers (35-70 m) is characterized by numerous horizontal galleries which housed the subterranean ground water circulation. When these fissures are plurimetric in extent this can lead to gallery collapse with the associated fill by rock fall breccia. This can partly block the river system but always leaves a higher zone of free circulation with high permeabilities of several hundreds of Darcys. These galleries form along the natural fracture system relative to the paleohydraulic gradient which in some cases has been preserved. The zone below permanent ground water level with no circulation of fluids is characterized by dissolution limited to non-connected vugs. Very locally these fissures can be enlarged by tectonic fractures which are non-connected and unimportant for reservoir drainage. Laterally, only the uppermost zone can be resolved by seismic imaging linked with horizontal well data (the wells are located at the top of the percolation zone). The Rospo Mare reservoir shows three distinct horizontal zones: a relict paleokarst plateau with a high index of open connected fractures, (area around the A and B platforms); a zone bordering the plateau (to the north-east of the plateau zone) very karstified but intensely infilled by cap rock shales (Miocene - Oligocene age); a zone of intensely disturbed and irregular karst paleotopography which has been totally infilled by shales. The performance of the production wells is dependent on their position with respect to the three zones noted above and their distance from local irregularities in the karst paleotopography (dolines, paleovalleys)

A ground water catchment was instrumented as a karst hydrology and water quality laboratory to develop long-term flow and water quality data. This catchment located in Woodford and Jessamine Counties in the Inner Bluegrass, Central Kentucky encompasses approximately 1620 ha, 40 water wells, over 400 sinkholes, 2 karst windows, and 1 sinking stream. The land uses consist of approximately 59% beef pasture, horse farm, and golf course; 16% row crops; 6% orchard; 13%forest; and 6% residential. The instrumentation consisted of a recording rain gage, an H-flume, a water stage recorder, and an automated water sampler. Flow data for 312 days were analyzed, and a peak flow rate prediction equation, specific to this catchment, was developed Recession curves were analyzed and found to be of two distinct mathematical forms, log curves and exponential curves. Prediction equations were good for the log-type recession curve and fair for the exponential-type recession curve. For the exponential recessions, the peak flow rate was found to be bimodally distributed The recession events were classified as either high flow or low flow, with the point of separation at 113 L/s. It was hypothesized that the flow system was controlled by pipe flow above 113 L/s and by open channel flow below 113 L/s. Subsequent analysis resulted in adequate prediction for the low flow events. Explained variation associated with the high flow events was low and attributed to storage in the karst system that was not incorporated into the predictor equation

Ring of cenotes (sinkholes), Northwest Yucatan, Mexico; its hydrogeologic characteristics and possible association with the Chicxulub impact crater, 1995, Perry Eugene, Marin Luis E. , Mcclain Jana, Velazquez Guadalupe,
A 180-km-diameter semicircular band of abundant karst sinkholes (Ring of Cenotes) in Northwest Yucatan, Mexico, coincides approximately with a concentric ring of the buried Chicxulub structure, a circular feature manifested in Cretaceous and older rocks, that has been identified as the product of the impact of a bolide. The ring, expressed in Tertiary rocks, marks a zone of high permeability as shown by (1) the sinkholes themselves, (2) breaks in the coastal dune system and high density of springs where the ring intersects the coast, and (3) water-level transects characterized by a decline in water level toward the ring. Any direct relation that exists between the Ring of Cenotes and the Chicxulub structure bears on regional hydrogeology. If the layer or zone responsible for the ring is deeply buried, it may act as a barrier to the movement of ground water across the main flow direction. Shallower zones of horizontal permeability could result in less complete diversion of ground water. Through its influence on Yucatan aquifer characteristics, the ring may provide a link between modern environmental problems and astrogeology. Possible origins for the Ring of Cenotes are (1) faulting, perhaps reactivated by post-Eocene-mid-Miocene basin loading, (2) permeability in a buried reef complex developed in the shallow Paleocene sea around the crater rim, or (3) breccia collapse occasioned by consolidation or by solution of evaporite components. If the ring developed on ancient faults, it may outline hydrothermal systems and mineral deposits produced during Paleocene cooling of the Chicxulub melt sheet

Coastal karst aquifers have highly variable distributions of porosity and permeability. The ability to assess the volume of aquifer occupied by freshwater in coastal karst aquifers is limited by both the lack of understanding of the effect that regions of cavernous porosity and permeability have on the configuration of the saline-freshwater mixing zone and by the limited knowledge of the location of the cavernous regions. A dual-density ground-water flow and solute transport model was used to explore the effect that the depth, lateral extent, and proximity to the coast of zones of high porosity and permeability has on the configuration of the saline-freshwater mixing zone. These aquifer heterogeneities tend to shift the mixing zone upward relative to the position it would have in aquifers with homogeneous porosity and permeability, Zones of high porosity and permeability located at positions shallow in the aquifer or nearer to the coast had the greatest effect. In fact, for the conditions modeled, position was more important in modifying the configuration of the mixing zone than was changing the ratio of the intrinsic permeability of the cavernous zone to the aquifer matrix from 100 to 1000. Modeling results show that ground-water flow is concentrated into the zones of high porosity and permeability and that flow configuration results in steep salinity gradients with depth, Field observations of the location of the halocline and of step changes in ground-water composition coincident with regions of cavernous porosity in coastal karst aquifers corroborate the model results, In a coastal setting with saline water intruding into an aquifer, the effect of cavernous porosity and associated high permeability is to decrease the volume of aquifer in which freshwater occurs by a greater degree than would occur in an aquifer with homogeneous porosity and permeability

The hydro-electric power plant (HEPP) which will exclusively use water from a karst underground storage basin will be built in the vicinity of the abundant karst spring Ombla in Croatia. This paper presents the results obtained by hydrogeologic, hydrologic and hydraulic investigations related to the principles of ground water circulation in the karst. The analyses included the determination of the effective porosity n(e) of the karst aquifer and the definition of the volume of large conduits and small fractures in the karst which form the aquifer volume. The position and dimensions of large karst conduits have also been defined. It was established that in three small springs, Zaton, Zavrelje and Slavljan, water overflows from the Ombla Spring in periods of high ground water levels, It was also discovered that at certain periods the Dupuit expression for steady-state flow in an unconfined aquifer can be used. In accordance with this, it was possible to determine the values of hydraulic conductivity, K (in m s(-1)), for the Ombla aquifer. They range from 2 x 10(-3) to 5 x 10(-3) m s(-1) and are inversely proportional to the Ombla Spring discharge. Continuous measurements of the ground water level by several piezometers located in the karst hinterland of the Ombla Spring and simultaneous measurement of the discharge made it possible to define discharge curves of the Ombla Spring dependent upon the ground water levels at Various locations. Characteristic features of the discharge curves made the identification of the position and dimensions of the main karst conduits possible

The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are located on karat terrain. Nitrate concentrations were measured in several karat springs in Southeastern West Virginia in order to determine the impact of animal agriculture on nitrate pollution of the karst ground water system. Karst basins with 79, 51, 16, and 0 percent agriculture had mean nitrate concentrations of 15.8, 12.2, 2.7, and 0.4 mg/l, respectively. A strong linear relationship between nitrate concentration and percent agricultural land was shown. Median nitrate concentration increased about 0.19 mg l(-1) per percent increase in agricultural land. Weather patterns were also found to significantly affect the median nitrate concentrations and the temporal variability of those concentrations. Lower nitrate concentrations and lower temporal variability were observed during a severe drought period. It was concluded that agriculture was significantly affecting nitrate concentrations in the karst aquifer. Best management practices may be one way to protect the ground water resource

High-resolution temporal record of Holocene ground-water chemistry; tracing links between climate and hydrology, 1996, Banner Jl, Musgrove M, Asmerom Y, Edwards Rl, Hoff Ja,
Strontium isotope analysis of precisely dated calcite growth layers in Holocene speleothems from Barbados, West Indies, reveals high-resolution temporal variations in ground-water composition and may provide a new approach to documenting the links between climate variability and fluctuations in the hydrologic cycle such as recharge rates and flow paths. The speleothems grew in a cave that developed in a fresh-water aquifer in uplifted Pleistocene reef limestones. Three periods of ground-water Sr isotope evolution are observed: 87 Sr/ 86 Sr values decreased from 6 to 4 ka, increased from 4 to 1 ka, and decreased again after 1 ka. The Sr isotope oscillations appear to record periodic variations in the relative Sr fluxes to ground water from exchangeable soil sites vs. carbonate mineral reactions, as reflected in 87 Sr/ 86 Sr values of modern Barbados ground waters. A hydrologic model that explains changes in ground-water flow routes in karst aquifers as a function of amount of rainfall recharge can account for the speleothem Sr isotope record. Independent Holocene climate records that indicate a major period of aridity at around 1.3-1.1 ka in the American tropics correspond with periodic variations in rainfall on Barbados that are predicted by this hydrologic model

An examination of short-term variations in water quality at a karst spring in Kentucky, 1996, Ryan M. , Meiman J. ,
Water quality at many karst springs undergoes very high amplitude but relatively brief degradation following influxes of runoff. Accurately recording transient variations requires more rigorous sampling strategies than traditional methods, A pilot study to determine the usefulness of high-frequency, flow-dependent sampling strategies, combined with coincidental quantitative dye tracer tests, was implemented in the Big Spring Ground-Water Basin in Mammoth Cave National Park, Kentucky. Data recorded following two separate runoff events showed that the concentrations of two nonpoint source pollutants, fecal coliform bacteria and suspended sediment, greatly exceeded prerunoff event values for very short periods of time, A phreatic conduit segment, calculated at 17 million liters in volume, instantaneously propagated head changes, caused by direct runoff entering the aquifer, from the ground-water inputs to Big Spring, A significant delay between the initial increases in discharge and the arrival of direct runoff, as indicated by a steady decrease in specific conductance, represented the time required to displace this volume of phreatic water, The delay showed that sampling a karst spring only during peak discharge would be an unreliable sampling method. Runoff from two different subcatchments was tagged with tracer dye and the timing of the passage of the resultant dye clouds through Big Spring were compared to water quality variations, Distinct lag times between the arrival of direct runoff at Big Spring and the bacteria and suspended sediment waveforms were shown through the concurrent quantitative tracer tests to be related to the areal distribution of land-cover type within the basin

Hydrogeological investigations in northwestern Yucatan, Mexico, using resistivity surveys, 1996, Steinich B. , Marin L. E. ,
Eight Schlumberger soundings and four Wenner anisotropy measurements were conducted in the northwestern section of the Yucatan Peninsula for hydrogeological investigations of a karst aquifer. This system is influenced by a circular high permeability zone (Ring of Cenotes) probably related to the Chicxulub Impact Crater. Schlumberger soundings and Wenner anisotropy measurements show that the karst aquifer can be modeled as an electrically anisotropic medium. Anisotropy is related to preferential permeability directions channeling ground-water flow within the aquifer. Directions of maximum permeability were determined using Wenner anisotropy measurements. Electrical soundings were conducted at different sites near the Ring of Cenotes. Resistivity values decrease toward the Ring of Cenotes supporting the hypothesis that selected segments of the Ring have high permeability. Several soundings were conducted in order to study lateral permeability variations along the Ring. A high permeability section can be identified by low resistivity models and is related to a zone of high cenote density. A low permeability section of the Ring was found showing high resistivity models. This zone overlaps with an area of low cenote density. Electrical soundings were used to determine the depth of the fresh-water lens; the interface was detected along two profiles perpendicular and parallel to the Ring of Cenotes resulting in a depth that ranged from 18 m near the coast up to 110 m in the southeastern part of the study area. The predicted depths of the interface using electrical methods showed a good correlation with Ghyben-Herzberg and measured interface depths at some sites. Discrepancies between calculated and interpreted interface depths at two sites may be explained by horizontal-to-vertical permeability anisotropy

Meteoric phreatic speleothems and the development of cave stratigraphy: An example from Tounj Cave, Dinarides, Croatia, 1996, Babic L, Lackovic D, Horvatincic N,
Speleothems occurring in some caves of the carbonate Dinarides line all channel surfaces, and have been deposited from meteoric waters under phreatic conditions. Such phreatic speleothemic deposition modifies common experience (l) that meteoric phreatic conditions cause dissolutional widening of cave voids, and (2) that speleothems imply vadose conditions. The phreatic speleothems described here postdate an early polygenetic evolution of the cave voids, and predate the last, vadose stage. They were likely produced during the late/postglacial warming period, when dissolved carbonate was amply supplied, and when there was much water available for saturation of underground voids. Phreatic speleothems may be used as a tool for time correlation of internal deposits, both within one cave and within a karst region. They indicate an important stage in the history of the ground-water regime of an area. In general, phreatic speleothems help in better understanding of the development of subterranean voids and related karst/palaeokarst

Results 16 to 30 of 116
You probably didn't submit anything to search for