Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That sheet erosion is erosion occurring over widespread tabular sedimentary or effusive rock [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hypogene speleogenesis (Keyword) returned 132 results for the whole karstbase:
Showing 16 to 30 of 132
Book review: Hypogene Speleogenesis: Hydrogeological and morphogenetic , 2007, Faulkner, Trevor

Scientific Note: Geothermal speleogenesis, 2007, Faulkner, Trevor

CARVING UP THE PRE-ILLINOIAN CENTRAL HIGHLANDS: TRANSVERSE SPELEOGENESIS AND EMERGENT BEDROCK MEANDERS IN THE OZARKS, 2007, Elfrink, N.

New data fail to support the prevailing theory that meandering bedrock valleys inherit their sinuosity from ancient alluvial rivers. In the Ozarks, observations indicate that bedrock meanders emerge during incision as a result of erosion by emergent groundwater and surface flow. Crustal tilting pressurizes deep aquifers that feed a huge base flow to large springs. Because of their large size and persistence in time, these artesian conduits have the potential to create new base levels of erosion. Transverse speleogenesis causes groundwater flow lines and surface streams to converge toward the springs, thereby further increasing the rate of landscape lowering and creating bedrock meanders. Groundwater outflow accelerates stream piracy, creates asymmetric drainage patterns and cuts channels across structural upwarps. By contrast, the antecedent meander theory favors long-term drainage stability that cannot explain the incredible diversity of the freshwater fauna found in the Central Highlands. Widely disjunct species of highland fish that thrive only in clear, high-gradient streams indicate that the Ouachitas, the Ozarks and the Eastern Highlands were once a continuous upland connected by a “land bridge” in southern Illinois. This connection allowed ancestral species to become widespread enough to be affected by a vicariant event, usually attributed to onset of glaciation. However, a 400-km eastward shift in Gulf of Mexico sedimentation indicates this vicariant event may have occurred in the middle Pleistocene, when it is proposed that the Mississippi River dissected the Central Highlands, separating the Interior Highlands from the Eastern Highlands.


Epigene and Hypogene Gypsum Karst Manifestations of the Castile Formation: Eddy County, New Mexico and Culberson County, Texas, USA., 2008, Stafford K. , Nance R. , Rosaleslagarde L. And Boston P. J.
Permian evaporites of the Castile Formation crop out over ~1,800 km2 in the western Delaware Basin (Eddy County, New Mexico and Culberson County, Texas, USA) with abundant and diverse karst manifestations. Epigene karst occurs as well-developed karren on exposed bedrock, while sinkholes dominate the erosional landscape, including both solutional and collapse forms. Sinkhole analyses suggest that more than half of all sinks are the result of upward stoping of subsurface voids, while many solutional sinks are commonly the result of overprinting of collapsed forms. Epigene caves are laterally limited with rapid aperture decreases away from insurgence, with passages developed along fractures and anticline fold axes. Hypogene karst occurs as diverse manifestations, forming the deepest and longest caves within the region as well as abundant zones of brecciation. Hypogene caves exhibit a wide range of morphologies from complex maze and anastomotic patterns to simple, steeply dipping patterns, but all hypogene caves exhibit morphologic features (i.e. risers, outlet cupolas and half-tubes) that provide a definitive suite of evidence of dissolution within a mixed convection (forced and free convection) hydrologic system. Extensive blanket breccias, abundant breccia pipes and numerous occurrences of calcitized evaporites indicate widespread hypogene speleogenesis throughout the entire Castile Formation. Although most cave and karst development within the Castile outcrop region appears to have hypogene origins, epigene processes are actively overprinting features, creating a complex speleogenetic evolution within the Castile Formation.

Conduit evolution in deep-seated settings: Conceptual and numerical models based on field observations, 2008, Rehrl C. , Birk S. , Klimchouk A. B.

To examine the interrelation between hydrogeological environment and conduit development in deep-seated settings, a conceptual model is tested by numerical modeling. Based on field observations, simplified model settings are designed and crucial parameters are varied. A coupled continuum-pipe flow model is employed for simulating conduit development within the soluble unit of a multilayer aquifer system. In agreement with field observations, the evolving cave patterns are characterized by pronounced horizontal passages and multiple vertical conduits at the bottom of the soluble unit but only few at the top. The frequency distribution of conduit diameters is found to be bimodal if the permeability of the rock formation is sufficiently high to allow competitive conduit development governed by the feedback between increasing flow and dissolution rates. This feedback, however, is suppressed in low-permeability formations. As a consequence, conduit development is uniform rather than competitive.


Alteration of fractures by precipitation and dissolution in gradient reaction environments: Computational results and stochastic analysis, 2008, Chaudhuri A. , Rajaram H. , Viswanathan H.

Precipitation and dissolution reactions within fractures alter apertures, which in turn affects their flow and transport properties. Different aperture alteration patterns occur in different flow and reaction regimes, and they are also influenced by preferential flow resulting from spatial variations in the aperture. We consider the alteration of variable-aperture fractures in gradient reaction regimes, where fluids are in chemical equilibrium with a mineral everywhere but precipitation and dissolution are driven by solubility gradients associated with temperature variations. The temperature field is defined by a geothermal gradient corresponding to a conduction-dominated heat transfer regime. Monte Carlo simulations on computer-generated aperture fields vividly illustrate pattern formation resulting from two-way feedback between fluid flow and reactive alteration. In dissolution-controlled systems, distinct dissolution channels develop along the dominant flow direction, while elongated precipitate bodies form perpendicular to the mean flow direction in precipitation-controlled systems. Aperture variability accelerates the increase and decrease of effective transmissivity by dissolution and precipitation, respectively. The dominance of precipitation versus dissolution is determined by the angle between the mean hydraulic gradient and solubility/temperature gradient. Development of pronounced anisotropy with oriented elongate features is the key feature of aperture alteration in gradient reaction regimes. A stochastic analysis is developed, which consistently predicts general trends in the aperture field during reactive alteration, including the mean, variance, and spatial covariance structure. Our results are relevant to understanding the long-term diagenetic evolution of fractures in conduction-dominated heat transfer regimes and related problems such as emplacement of ocean bed methane hydrates.


HYPOGENE KARST AND SULFATE DIAGENESIS OF THE DELAWARE BASIN: SOUTHEASTERN NEW MEXICO AND FAR WEST TEXAS, PhD Thesis , 2008, Stafford, Kevin Wayne

Hypogene speleogenesis is widespread throughout the Delaware Basin region as evidenced by intrastratal dissolution, hypogenic caves and suites of diagenetic minerals. The world famous carbonate caves of the Capitan reef facies of the Guadalupe Mountains have long been associated with sulfuric acid processes and recently have been associated with semi-confined, hypogene dissolution. However, evaporite karst within Permian backreef and basin-filling facies has been traditionally associated with surficial, epigene processes. On the eastern edge of the Delaware Basin cavernous porosity associated with oil reservoirs in Permian carbonates have been attributed to eogenetic karst processes.
Interbedded (evaporite / carbonate), backreef facies within the mid-Permian Seven Rivers Formation exhibit characteristics of hypogene karst associated with semi-confined dissolution controlled by the eastward migration and entrenchment of the Pecos River. Coffee Cave is a good example of hypogene dissolution, forming a multi-storey, rectilinear maze with abundant distinctive morphologic feature suites (i.e. risers, channels and cupolas) indicative of hypogene speleogenesis. Other caves within the Seven Rivers and Rustler Formations show similar patterns, although often less well developed.
Within the Delaware Basin, Castile Formation evaporites have been extensively modified by hypogene processes. Field mapping coupled with GIS analyses clearly shows that karst development and evaporite calcitization are highly clustered throughout the outcrop area. Individual caves commonly exhibit complex morphologies, including complete suites of morphologic features indicative of intrastratal dissolution. Clusters of hypogene caves are commonly associated with clusters of evaporite calcitization and often occurrences of secondary selenite bodies, suggesting all three are genetically related. Brecciated cores and associated native sulfur deposits indicate that calcitized evaporites are the result of semi-confined sulfate reduction in the presence of ascending hydrocarbons. Hypogene caves are currently being overprinted by epigene processes as surface denudation results in breaching of previously confined solutional conduits. However, calcitized evaporites stand as resistant masses attesting to the widespread importance of hypogene processes within the Castile Formation.
On the southern end of the Central Basin Platform, the spatial distribution of cavernous porosity, secondary mineralization and abundant karst fabrics within the Yates Field carbonate strata provide convincing evidence that karst porosity, at least locally, within the San Andres and overlying Permian strata is the result of hypogene speleogenesis. Porosity development appears to have been enhanced by high geothermal gradients and the addition of sulfuric acid-rich fluids, reminiscent of the same processes that have been proposed for the extensive carbonate caves of the Guadalupe Mountains.
Recognition of the widespread occurrence of hypogene speleogenesis throughout the Delaware Basin region indicates that the regional diagenetic evolution has been significantly affected by confined fluid migration, including not only the development of porosity but also the emplacement of many secondary mineral deposits. Therefore, future natural resource management plans must consider the nature of hypogene karst in site evaluations throughout the region in order to better predict geohazards, potential groundwater contamination and characterize mineral resources.


Hypogene calcitization: Evaporite diagenesis in the western Delaware Basin, 2008, Stafford Kevin W. , Ulmerscholle Dana, Rosaleslagarde Laura

Evaporite calcitization within the Castile Formation of the Delaware Basin is more widespread and diverse than originally recognized. Coupled field and GIS studies have identified more than 1000 individual occurrences of calcitization within the Castile Formation outcrop area, which includes both calcitized masses (limestone buttes) and laterally extensive calcitized horizons (limestone sheets). Both limestone buttes and sheets commonly contain a central brecciated zone that we attribute to hypogene dissolution. Lithologic fabric of calcitized zones ranges from little alteration of original varved laminae to fabries showing extensive laminae distortion as well as extensive vuggy and open cavernous porosity. Calcitization is most abundant in the western portion of the Castile outcrop region where surface denudation has been greatest. Calcitization often forms linear trends, indicating fluid migration along fractures, but also occurs as dense clusters indicating focused, ascending, hydrocarbon-rich fluids. Native sulfur, secondary tabular gypsum (i.e. selenite) and hypogene caves are commonly associated with clusters of calcitization. This assemblage suggests that calcium sulfate diagenesis within the Castile Formation is dominated by hypogene speleogenesis.


Epigene and Hypogene Gypsum Karst Manifestations of the Castile Formation: Eddy County, New Mexico and Culberson County, Texas, USA., 2008, Stafford K. , Nance R. , Rosaleslagarde L. , Boston P. J.

Permian evaporites of the Castile Formation crop out over ~1,800 km2 in the western Delaware Basin (Eddy County, New Mexico and Culberson County, Texas, USA) with abundant and diverse karst manifestations. Epigene karst occurs as well-developed karren on exposed bedrock, while sinkholes dominate the erosional landscape, including both solutional and collapse forms. Sinkhole analyses suggest that more than half of all sinks are the result of upward stoping of subsurface voids, while many solutional sinks are commonly the result of overprinting of collapsed forms. Epigene caves are laterally limited with rapid aperture decreases away from insurgence, with passages developed along fractures and anticline fold axes. Hypogene karst occurs as diverse manifestations, forming the deepest and longest caves within the region as well as abundant zones of brecciation. Hypogene caves exhibit a wide range of morphologies from complex maze and anastomotic patterns to simple, steeply dipping patterns, but all hypogene caves exhibit morphologic features (i.e. risers, outlet cupolas and half-tubes) that provide a definitive suite of evidence of dissolution within a mixed convection (forced and free convection) hydrologic system. Extensive blanket breccias, abundant breccia pipes and numerous occurrences of calcitized evaporites indicate widespread hypogene speleogenesis throughout the entire Castile Formation. Although most cave and karst development within the Castile outcrop region appears to have hypogene origins, epigene processes are actively overprinting features, creating a complex speleogenetic evolution within the Castile Formation.


THE RELATIONSHIP BETWEEN CAVE MINERALS AND H2S RICH THERMAL WATERS ALONG THE CERNA VALLEY (SW ROMANIA), 2009, Onac Bogdan P. , Sumrall Jonathan, Tamas Tudor, Povara Ioan, Kearns Joe, Drmiceanu Veronica, Veres Daniel & Lascu Cristian
Within the Cerna Valley in southwestern Romania, over a 100 caves were formed in the Jurassic and Cretaceous limestone that outcrops on the valley walls. Three aspects are prominent when entering most of the caves in this region: the presence of considerable gypsum deposits, the amount of guano, and the cave temperature. High temperature anomalies are uncommon in the cave environment. In certain caves in the lower part of Cerna Valley, however, one can measure air temperatures as high as 40C. This situation is due to the presence of thermal water pooling or =owing through the caves or to the hot steam that rises along fractures from deeper thermal water pools. As a result, these caves provide a unique set of conditions that allowed for the deposition of a suite of unusual minerals. This study presents the results of fiftyy-seven mineral samples that were investigated by means of X-ray diffraction, geochemical, Fourier-transformed infrared spectroscopy, and scanning electron microscope analyses with the scope of linking the cave minerals with likely hypo- gene speleogenetic processes. Here we document the occurrence of twenty-two secondary cave minerals, among which, apjonite and tamarugite are the first recorded occurrences in a limestone cave environment. The minerals fall into three distinct associations: sulfate-dominated (Diana Cave), phosphate-dominated (Adam Shaft), and sulfate-phosphate-nitrate-rich assemblage (Great Salitrari Cave). Additional isotopic measurements performed on sulfate speleothems contribute valuable information on both minerals and cave origins.

GIANT COLLAPSE STRUCTURES FORMED BY HYPOGENIC KARSTIFICATION: THE OBRUKS OF THE CENTRAL ANATOLIA, TURKEY, 2009, Bayari S. , Ozyurt N. , Pekkans E.

Assessment of the tectonic, geologic and hydrogeologic processes reveal that the Obruks, mega collapse dolines located in the central Anatolia-Turkey, are products of hypogenic karsti?cation. Obruks are characterized by their cylindrical or truncated cone shapes with diameters and depths reaching several hundreds of meters. Geological, geophysical and hydrogeological data, along with the groundwater’s chemical and isotopic composition suggest a hypogene karsti?cation process that seems to be driven by the upward migration of a deep-seated carbon dioxide ?ux supplied by an asthenospheric rise. The linear distribution of obruks through the suture zone of a former oceanic subduction and their association with young volcanism reveal a tecto-genetic origin that is related to the extensional thinning of the upper lithosphere due to orogenic collapse of the Taurus Mountain Range, which is a part of the Alpine-Himalayan Orogenic Belt.


THE INFLUENCE OF HYPOGENE AND EPIGENE SPELEOGENESIS IN THEEVOLUTION OF THE VAZANTE KARST MINAS GERAIS STATE, BRAZIL, 2009, Bittencourt C. , Auler A. , Neto J. , Bessa V. , Silva M.

The advanced state of karsti?cation in the metadolomites of the Neoproterozoic Vazante Group has resulted in several geotechnical and hydrogeological problems in an underground zinc mine located in the city of Vazante, state of Minas Gerais, central Brazil, that have prompted detailed hydrogeological studies. The continuity of karsti?cation at depths below the regional base level suggests that hypogenic karsti?cation, driven by migration of ?uids from below due to hydrostatic pressure or other sources of energy may be a major player in the area. In this work several tools were used to understand the mechanisms of karsti?cation in the area, focusing on the relationship between karsti?cation and the location of ore bodies. The in?uence of both epigene and hypogene processes appears in the Vazante karstic evolution and has a relationship with the cave size. The study demonstrates that the size of voids decreases with depth. The largest cavities (greater than 15 meters) occur above the regional base level. This region is represented by the vadose zone, where epigenic karst processes predominate. Below this elevation, up to 250 meters in depth, a combination of epigene and hypogene processes occurs and the diameter of voids tends to decrease, being usually less than 10 meters. Below 250 meters, the phenomena of karsti?cation are strictly hypogenic and the diameter of voids is limited to less than 5 meters.


ASSESSING THE RELIABILITY OF 2D RESISTIVITY IMAGING TO MAP A DEEP AQUIFER IN CARBONATE ROCKS IN THE IRAQI KURDISTAN REGION, 2009, Aziz B. , Baban E.

A more accurate model of the subsurface is a two-dimensional (2-D) model where the resistivity changes in the vertical direction as well as in the horizontal direction along the survey line. Our survey was carried out by a new modern computerized static type resistivity meter, “SYSCAL Jr switch-72”. The interpretation of the 2D ?eld model was performed by the latest version of the software package “RES2DINV” version 3.54v and “RES2DMOD” version 3.01w, which perform smoothness constrained inversion using ?nite difference and ?nite elements forward modeling. The measurements were carried out by using Roll-along technique in 69 2-D soundings distributed over two pro?les. The area is characterized by quite homogenous and relatively thin recent sediments. The isopach map constructed shows generally about 10-80 m of these sediments. Excellent aquifers were detected in the Pila Spi limestones, which have wide ranges of resistivities between 22-700 ?.m due to lateral and vertical facies changes from low resistivity chalky limestone to compact high resistivity dolomite. This aquifer is buried beneath 10-80 m of sedimenst, and greater depths were detected in a few limited locations due to existence of particular structural features. The isopach map of the Pila Spi aquifer shows that thickness ranges between (20-135) m. In addition, three important structural features were identi?ed within the Pila Spi strata, a strike slip fault near Dargazen village, the “Hayasi Horst” which extends NE-SW close to Hayasi village, and a graben “Ibrahim Awa graben” close to Ibrahim Awa village. These structural features form natural obstacles below the surface and have great in?uence on the groundwater movements.


MORPHOLOGICAL INDICATORS OF SPELEOGENESIS: HYPOGENIC SPELEOGENS, 2009, Audra P. , Mocochain L. , Bigot J. Y. , Nobecourt J. C.

Hypogenic speleogenesis can be identi?ed at different scales (basinal ?ow patterns at the regional scale, cave patterns at cave system scale, meso- and micromorphology in cave passages). We focus here on small scale features produced by both corrosion and deposition. In the phreatic zone, the corrosion features (speleogens) are a morphologic suite of rising ?ow forms, phreatic chimneys, bubble trails. At the water table are thermo-sulfuric discharge slots, notches with ?at roofs. Above a thermal water table the forms re?ect different types of condensation runoff: wall convection niches, wall niches, ceiling cupolas, ceiling spheres, channels, megascallops, domes, vents, wall partitions, weathered walls, boxwork, hieroglyphs, replacement pockets, corrosion tables, and features made by acid dripping, such as drip tubes, sulfuric karren and cups. Each type of feature is described and linked to its genetic process. Altogether, these features are used to identify the dominant processes of speleogenesis in hypogenic cave systems. Hypogenic caves were recognized early, especially where thermal or sulfuric processes were active (MARTEL, 1935; PRINCIPI, 1931). However SOCQUET (1801) was one of the earliest modern contributors to speleogenetic knowledge, and probably the ?rst to identify the role of sulfuric speleogenesis by condensation-corrosion due to thermal convection. More recent major contributions evidenced the role of sulfuric speleogenesis and hydrothermalism (e.g. DUBLYANSKY, 2000; EGEMEIER, 1981; FORTI, 1996; GALDENZI AND MENICHETTI, 1995; HILL, 1987; PALMER AND PALMER, 1989). However, most of these case-studies were often considered as “exotic”, regarding the “normal” (i.e. epigenic) speleogenesis. Only recently, KLIMCHOUK (2007) provided a global model, allowing the understanding of “hypogenic” speleogenesis and gathering the characteristics of hypogenic caves. Consequently, the number of caves where a hypogenic origin is recognized dramatically increased during the last years. The hypogenic origin can be recognized at the regional scale (deep-seated karst in basins), at the scale of an individual cave system because of distinctive features in its pattern, by studying the morphology of the cave conduits, or at the local scale of wall features made by corrosion processes (i.e. speleogens). Such type of features depict the characteristics of local cave development, and by extension the characteristics of speleogenesis. The description and interpretation of hypogenic speleogens is generally scattered in the literature. The aim of this paper is to gather the most important hypogenic speleogens, considered here as indicators, and used for the identi?cation and characterization of the hypogenic speleogenesis. Our knowledge is based on the compilation of about 350 caves from the literature, and the study of some of the most signi?cant caves (AUDRA, 2007; AUDRA et al., 2002, 2006). In this paper, we focus on the speleogens (i.e. wall- scale corrosion features) as indicators of hypogenic speleogenesis; we exclude here solution feature at larger scale such as conduits and cave systems and depositional features (sediments). Some of the features observed in the sulfuric caves are speci?cally caused by this strong acid. Some features are closely associated with hydrothermalism. Other features that are widespread in hypogene caves are created without sulfuric in?uence. The following typology mainly takes into account the type of runoff. In con?ned settings with slow phreatic ?ow, cave features are common to all types of hypogene processes, whether they are sulfuric or not (i.e. carbonic, hydrothermal…). In uncon?ned settings, condensation-corrosion processes take place above the water table. These aerial processes, enhanced by the oxidation of sul?des by the thermal convections, and by the microbial processes, result in a large variety of cave features. Some features are closely related to speci?c processes. Consequently, they are considered as valuable indicators of the sulfuric speleogenesis.


HYPOGENE CAVE PATTERNS, 2009, Audra P. , Mocochain L. , Bigot J. Y. , Nobecourt J. C.

The hypogenic cave pattern re?ects the speleogenetic processes incvolved. Processes vary according to the depth in the aquifer, involving mixing corrosion by convergent ?ux and with meteoric water, cooling, sulfur oxidation, carbon dioxide degassing, and condensation-corrosion. Cave patterns are: isolated geodes, 2D and 3D multistory systems following joints and bedding planes, Giant phreatic shaft, Water table mazes, Isolated chambers, Upwardly dendritic spheres, Water table cave, ‘Smoking’ shafts. The development of caves by hypogene processes (i.e. “hypogenic speleogenesis”) corresponds to the formation of caves by water that recharges the soluble formation from below, driven by hydrostatic pressure or other sources of energy, independent of recharge from the overlying or immediately adjacent surface” (FORD, 2006). Hypogenic caves - often referred to as “thermal caves” - were often considered as an “exotic” side of the “normal” (i.e. meteoric) caves. Palmer (1991) estimated that about 10% caves have hypogenic origin. Recent studies (overview in KLIMCHOUK, 2007) have emphasized the speci?c hydrogeological background and shown that hypogenic caves are much more common than previously thought. The extreme diversity of settings (carbonic, sulfuric, thermal, cold, deep phreatic, shallow phreatic, vadose...) in different geological or geomorphological contexts produces a puzzling impression: each hypogenic cave seems to be unique, with few characteristics in common with the other hypogenic caves in terms of their patterns.


Results 16 to 30 of 132
You probably didn't submit anything to search for