Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That cave system is 1. an underground network of passages, chambers, or other cavities. 2. the caves in a given area related to each other hydrologically, whether continuous or discontinuous from a single opening [10]. synonyms: (french.) reseau souterrain; (german.) hohlensystem; (greek.) speleothes systema, thiction; (italian.) sistema carsico sotterraneo; (russian.) sistema podzemnih pescher; (spanish.) sistema de cavidades; (turkish.) magara sistemi, serisi; (yugoslavian.) pecinski (spiljski) sistem, amski sistem. see also cave; cave group; cave series; cavern.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for balance (Keyword) returned 140 results for the whole karstbase:
Showing 16 to 30 of 140
WATER-BUDGET, FUNCTIONING AND PROTECTION OF THE FONTAINE-DE-VAUCLUSE KARST SYSTEM (SOUTHEASTERN FRANCE), 1992, Blavoux B, Mudry J, Puig Jm,
The karst aquifer of the well-known Fontaine de Vaucluse has been recently studied, results have been got about delimitation of the system and its working. Geological data (lithology and structure) have allowed to delimit an 1115 Km2 intake area including Ventoux-Lure north facing range (1,909-1,826 m) and the Plateau which is prolonging it southwards (Fig. 1 and 2). The average altitude of the whole area, obtained by balancing elevation belt surfaces, is about 870 m. This elevation squares with results of tracing tests (Fig. 3), environmental physical, chemical and isotopic tracings, that allow to value a 850 m average altitude for the intake area (Fig. 4). The moisture balance has been computed from an altitude belts climatic model, using local rain an temperature gradients (Fig. 5 and Table II), because the weather network is not representative. So, rainfalls rise of about 55 mm per 100 m elevation and temperature decreases of about 0.5-degrees-C per 100 m. The consequence of these two antagonist phenomena is the quasi constant value of actual evapotranspiration on each altitude belt. With the Fig. 7 organigram, curves of effective rainfalls and infiltration coefficient versus elevation can be plotted (Fig. 6). This computation shows that 3/4 of the total and the whole of dry season effective rainfalls are provided by the part of the intake area situated above the average altitude: on the lowest belt, effective rainfalls are only 120 mm per year and increase to 1380 mm on the upper section (Fig. 8 and Table 1). The weighted effective rainfalls are about 570 mm per year for the whole intake area. Hydrodynamical and physico-chemical studies show, despite its large size, the weak inertia of the system, so proves its good karstification, that confirms for the whole system the pin-point speleological observations. The discharge of the spring, which average value is 21 m3.s-1 (only 18 for the last ten years), can exceed 100 m3.s-1 and the minimum has never been lower than 3.7 m3.s-1 (Fig. 9). When it rains on the intake area, the increase of the discharge is very sudden in a rainy period : one to four days. This short delay is due to seepage through epikarst and unsaturated zone. During dry periods, the spring reaction is deadened, due to storage in the unsaturated zone. The silica content distribution was plotted during several hydrokinematical phases (Fig. 10). It shows: an almost unimodal distribution for the 8 km2 fissured limestone aquifer of Groseau; a multimodal one for the 1115 km2 karst aquifer of Fontaine de Vaucluse. This proves that karstification is more important than size in the response of the system. Weak summer rainfalls do not influence the discharge, nevertheless they influence chemistry of the spring water, and so interrupts the water depletion phasis. Then, the decrease of discharge can continue after the end of the chemical depletion phasis, water which is overflowing after summer rainfalls (in a dry period) is influenced hy the chemistry of seepage water : on the graph of a principal components analysis, done on chemical variables. an hysteresis phenomenon can be seen (Fig. 11). A discriminant analysis (Fig. 12) confirms that these autumn waters, with high ratio seepage tracers, are not reserve waters from the saturated zone. The ratio of reserve water in the total discharge, is preponderant: 3/4 and 2/3 respectively of the yearly runoff volumes for 1981 and 1982 (Fig. 13), but an important part of these reserves can be stored in the unsaturated zone. This storage capacity can be valued by different means: transposing to Vaucluse (1115 km2) the volume measured on another karst system in the Pyrenees (13 km2); it gives about 100 million m2; using setting parameters of Bezes model (1976) on the same aquifer: it gives 113 million m3; using depletion curves, that show, for instance during the 1989 summer and autumn dry period, a 80 million m3 volume. In all cases, we get a value of about one hundred million m3 for the storage capacity of the unsaturated zone. With a 20 m range of fluctuation for the water table and with a 10(-2) specific yield, on a 500 to 1,000 km2 saturated zone, the zone of fluctuation can release about 10 to 20 million m3. Then, the volume of water stored in the whole saturated zone, with a 300 m minimum thickness (depth of the waterlogged pit of the Fontaine), a 500 km2 minimum surface and a 10(-3) specific yield, is about 150 million m3, including 27 million m3 stored in the channels. So, the unsaturated zone represents a significant part of the whole storage capacity and most of the yearly renewable reserves. Paradoxically, the biggest french spring is not tapped at all; as its intake area is neither a regional nor a national park, no general protection covers it : because of its good karstification, the vulnerability of the system is important. Good quality of water is attributable to the low population and human activities density on the intake area (4 inh.km-2). A great part of the intake area is uncultivated (large forest and ''garrigues'' areas). Due to the lack of surface water and scantness of soils, agriculture is not intensive (lavender, thyme, sage and bulk wheat fields. meadowlands). On the mountainous zone, roads are salted in winter and snowmelt water can reach a significantly high chloride ratio than in a natural climatic functioning (for instance 25 mg.l-1 in Font d'Angiou where the ratio would have been 3 mg.l-1). As tourism is developing both on the mountain and on the plateau, the management of the highest intake area must be carefully held: its part is preponderant in the feeding of the system

Use of hydrologic, hydrochemical and isotopic data in identification of groundwater flow patterns in Lower Zamantı Basin (Eastern Taurids-Turkey), 1993, Bayari Celal Serdar, Gurer Ibrahim
In karst basins where hydraulic structures ARE designed to utilize the existing water potential, determination of the distinct groundwater flow patterns and the inter-relations among them bears great importance from the view point of the geotechnical safety of the structure. The combined use of hydrologic, hydrochemical and isotopic data enables us to identify different groundwater flow patterns prevailing in karst basins. Once the inter-relation among the groundwater flow patterns is established, the decision regarding the implementation of projects will be easier. Hydrologic investigations including analyses of the "stream yield" and "groundwater balance", produce invaluable information that can be used to locate the important karstic effluents along the basin. The study of the hydrochemistry of major karstic effluents reveals reliable information on the "depth" of underground circulation and the "recharge conditions" dominating within the karst system. Evaluation of environmental isotopic data introduces important details pertaining to the "mean recharge area elevations" and "turn-over times" of the karst waters and inter-relation among each other. Sometimes very closely located karstic outflows may have quite different circulation/recharge characteristics. This paper attempts to demonstrate the combined use of hydrologic, hydrochemical and isotopic techniques for the determination of the "deep-regional" and "shallow" groundwater circulation patterns existing in the Lower Zamanti Basin.

Proposal for a micro-climatic research to be carried on in deep underground zones, 1994, Choppy Jacques, Cigna Arrigo A.
Deep underground zones of karst systems are practically isolated from the outside influence and their climatological characteristics are scarcely known. To improve the knowledge of the karst areas it would be therefore rather useful to obtain energy balances for different environmental situations in order to evaluate both the deep climatological phenomena and the outside influence.

Karstification without carbonic acid; bedrock dissolution by gypsum-driven dedolomitization, 1994, Bischoff Jl, Julia R, Shanks Wc, Rosenbauer Rj,
Aggressive karstification can take place where dolomite and gypsum are in contact with the same aquifer. Gypsum dissolution drives the precipitation of calcite, thus consuming carbonate ions released by dolomite. Lake Banyoles, in northeastern Spain, is a karst lake supplied by sublacustrine springs, and karstic collapse is occurring in the immediate vicinity of the lake. Lake water is dominated by Mg-Ca and SO 4 -HCO 3 , and is supersaturated with calcite that is actively accumulating in lake sediments. Water chemistry, sulfur isotope composition, local stratigraphy, and mass-balance modeling suggest that the primary karst-forming process at Lake Banyoles is dedolomitization of basement rocks driven by gypsum dissolution. Karstification takes place along the subsurface contact between the gypsiferous Beuda Formation and the dolomitic Perafita Formation. This process is here recognized for the first time to cause karstification on a large scale; this is significant because it proceeds without the addition of soil-generated carbonic acid. Gypsum-driven dedolomitization may be responsible for other karstic systems heretofore attributed to soil-generated carbonic acid

KARSTIFICATION WITHOUT CARBONIC-ACID - BEDROCK DISSOLUTION BY GYPSUM-DRIVEN DEDOLOMITIZATION, 1994, Bischoff Jl, Julia R, Shanks Wc, Rosenbauer Rj,
Aggressive karstification can take place where dolomite and gypsum are in contact with the same aquifer. Gypsum dissolution drives the precipitation of calcite, thus consuming carbonate ions released by dolomite. Lake Banyoles, in northeastern Spain, is a karst lake supplied by sublacustrine springs, and karstic collapse is occurring in the immediate vicinity of the lake. Lake water is dominated by Mg-Ca and SO4-HCO3, and is supersaturated with calcite that is actively accumulating in lake sediments. Water chemistry, sulfur isotope composition, local stratigrapy, and mass-balance modeling suggest that the primary karst-forming process at Lake Banyoles is dedolomitization of basement rocks driven by gypsum dissolution. Karstification takes place along the subsurface contact between the gypsiferous Beuda Formation and the dolomitic Perafita Formation. This process is here recognized for the first time to cause karstification on a large scale; this is significant because it proceeds without the addition of soil-generated carbonic acid. Gypsum-driven dedolomitization may be responsible for other karstic systems heretofore attributed to soil-generated carbonic acid

RAPID ENTRENCHMENT OF STREAM PROFILES IN THE SALT CAVES OF MOUNT SEDOM, ISRAEL, 1995, Frumkin A, Ford Dc,
Rock salt is approximately 1000 times more soluble than limestone and thus displays high rates of geomorphic evolution. Cave stream channel profiles and downcutting rates were studied in the Mount Sedom salt diapir, Dead Sea rift valley, Israel. Although the area is very arid (mean annual rainfall approximate to 50 mm), the diapir contains extensive karst systems of Holocene age. In the standard cave profile a vertical shaft at the upstream end diverts water from a surface channel in anhydrite or elastic cap rocks into the subsurface route in the salt. Mass balance calculations in a sample cave passage yielded downcutting rates of 0.2 mm s(-1) during peak flood conditions, or about eight orders of magnitude higher than reported rates in any limestone cave streams. However, in the arid climate of Mount Sedom floods have a low recurrence interval with the consequence that long-term mean downcutting rates are lower: an average rate of 8.8 mm a(-1) was measured for the period 1986-1991 in the same sample passage. Quite independently, long-term mean rates of 6.2 mm a(-1) are deduced from C-14 ages of driftwood found in upper levels of 12 cave passages. These are at least three orders of magnitude higher than rates established for limestone caves. Salt cave passages develop in two main stages: (1) an early stage characterized by high downcutting rates into the rock salt bed, and steep passage gradients; (2) a mature stage characterized by lower downcutting rates, with establishment of a subhorizontal stream bed armoured with alluvial detritus. In this mature stage downcutting rates are controlled by the uplift rate of the Mount Sedom diapir and changes of the level of the Dead Sea. Passages may also aggrade. These fast-developing salt stream channels may serve as full-scale models for slower developing systems such as limestone canyons

The combined use of Sr-87/Sr-86 and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst, 1996, Katz B. G. , Bullen T. D. ,
The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The Sr-87/Sr-86 ratio along with the stable isotopes, D, O-18, and C-13 were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the Sr-87/Sr-86 ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2 generally increase with depth, and higher concentrations of Sr2 in water from the Upper Floridan aquifer (20-35 mu g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [delta(13)C = -1.6 permil (parts per thousand)] is also indicated by an enriched delta(13)C(DIC) (-8.8 to -11.4 parts per thousand) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (delta(13)C(DIC) < -16 parts per thousand). Groundwater downgradient from Lake Barco was enriched in O-18 and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the Sr-87/Sr-86 ratio of groundwater and aquifer material become less radiogenic and the Sr2 concentrations generally increase with depth. However, Sr2 concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2 concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2 from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the Sr-87/Sr-86 ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three distinct hydrogeologic units displays considerable variability in Sr concentration and isotopic composition, the dominant processes associated with the mixing of lakewater leakage with groundwater, as well as the effects of mineral-water interaction, can be ascertained by integrating the use of stable and radiogenic isotopic measurements of groundwater, lakewater, and aquifer minerals

Application and simplification of the SIMERO model for the Vozmediano Spring (Spain), 1996, Sanz E. ,
In order to explain the functioning of the Moncayo karst aquifer, the mathematical SIMERO model has been applied to the 21 years of information on the flow of the spring. The results yield the following mean values for the annual water balance: rainfall 714.2 mn; surface runoff 35.6 mm; actual evaporation 404.9 mn; recharge 273.7 mm. With the results of the recharge, the dependencies between it and the rainfall and temperature values have been calculated, obtaining a regression line. The SIMERO model has been simplified in such a way that the flow of the spring in a given month can be calculated by knowing only the precipitation and the temperature of that month and the flow of the previous month

The nutritional status of healthy and declining stands of Banksia integrifolia on the Yanakie Isthmus, Victoria, 1997, Bennett Lt, Attiwill Pm,
Banksia integrifolia L.f. has been in decline an calcareous sands of the Yanakie Isthmus, southern Victoria, since early 1980. Early studies indicated that the decline is associated with a particular soil condition possibly a nutritional imbalance involving Fe. However, in foliage samples collected from the three main soil types of the Isthmus, declining trees had similar concentrations of Fe but lower concentrations of Ca than healthy trees. Comparisons were made of seasonal variation in concentrations of macro- and micro-nutrients in foliage and litterfall from healthy trees (to minimise secondary changes associated with decline) within healthy and declining sites on the same soil type. On average, litterfall and the nutrient content of litterfall was greatest within the canopy area of B. integrifolia of the healthy stand. Banksias of the healthy stand also had greater concentrations of N, P, K and Na in fully-expanded leaves, resorbed greater proportions of phloem-mobile nutrients from senescent leaves and accumulated more Ca in senescent leaves. However, there was no evidence of nutritional imbalance in healthy trees within declining stands. It is argued that the lower foliar Ca in declining trees on three soil types and lower nutritional status of healthy trees within declining stands were due to lower productivity and lower water use and were therefore a result or an indication of decline rather than a cause

Dedolomitization as a driving mechanism for karst generation in Permian Blaine formation, southwestern Oklahoma, USA, 1997, Raines M. A. , Dewers T. A. ,
Cyclic deposits of Permian shales, dolomites, and halite and gypsum-bearing strata in the Blaine Formation of Southwestern Oklahoma contain abundant karst features. The present study shows that an important mechanism of karst development in these sequences is dedolomitization, wherein gypsum and dolomite in close spatial proximity dissolve and supersaturate groundwaters with respect to calcite. The net loss of mass accompanying this process (dolomite and gypsum dissolution minus calcite precipitation) can be manifest in secondary porosity development while the coupled nature of this set of reactions results in the retention of undersaturated conditions of groundwater with respect to gypsum. The continued disequilibrium generates karst voids in gypsum-bearing aquifers, a mineral-water system that would otherwise rapidly equilibrate. Geochemical modeling (using the code PHRQPITZ, Plummer et al 1988) of groundwater chemical data from Southwestern Oklahoma from the 1950's up to the present suggests that dedolomitization has occurred throughout this time period in evaporite sequences in Southwestern Oklahoma. Reports from groundwater well logs in the region of vein calcite suggest secondary precipitation, an observation in accord with dedolomite formation In terms of the amounts of void space produced by dissolution, dedolomitization can dominate gypsum dissolution alone, especially in periods of quiescent aquifer recharge when gypsum-water systems would have otherwise equilibrated and karst development ceased. Mass balance modeling plus molar volume considerations show that for every cubic cm of original rock (dolomite plus gypsum), there is 0.54 cm(3) of calcite and 0.47 cm(3) of void space produced Only slightly more pore space results if the dedolomitization reaction proceeds by psuedomorphic replacement of dolomite by calcite than in a reaction mechanism based on conservation of bicarbonate

Influence of climatic parameters in karstic denudation, 1997, Gombert P. ,
Karstic denudation is empirically estimated by specific dissolution or geochemical balance calculations, which need a precise knowledge of the aquifer, or by mathematical expressions which only depend upon rainfall. It is in fact known that water inflow charged with CO2 is the main karstic agent. We propose a mathematical model called << Maximal Potential Dissolution >> (DMP) and based on efficient infiltration calculation, CO2 soil productivity and knowledge of the calcocarbonic equilibrium

Strategic ground water management for the reduction of karst land collapse hazard in Tangshan, China, 1997, Wang H. T. , Li Y. X. , Wang E. Z. , Zhao Z. Z. ,
Karst land collapse is a geological hazard caused mainly by human activities such as the pumping of ground water. The present study is aimed at determining a management strategy to minimize the risk of karst land collapse in the urban area of Tangshan, China. A method of groundwater management for multi-aquifer systems with groundwater confined and unconfined interchange properties has been developed. A groundwater simulation model and a management model are constructed for the studied area. The data used by the simulation and management models include the geometry of the aquifer systems, the parameters of hydrogeology, the distribution of recharge, and discharge in the simulation period and the historical water table elevations. The results of the model calculations show that the total balance between recharge and discharge for both Quaternary and bedrock aquifers is 4.7 x 106 m(3) in the period from November 1989 to October 1990. The optimal annual average pumping rate from the underlying bedrock aquifer is some 25.8 x 10(6) m(3), which is 54.4% of that which was pumped out of the aquifer in the hydrological year of 1990. If the management plan is carried out, the groundwater level in the bedrock aquifer will recover its confined state in most of the areas at risk of land collapse. This is the most resistant state to collapse in terms of groundwater flow.

Geochemical evolution of a karst stream in Devils Icebox Cave, Missouri, USA, 1997, Wicks Carol M. , Engeln Joseph F. ,
A 3.7 km flowpath along the main stream channel in Devils Icebox Cave, Boone County, Missouri, was sampled on 23 January, 23 March and 18 September 1994. In January 1994, the water was oversaturated with respect to both calcite and dolomite, and only minor compositional changes were observed along the flowpath. In March 1994, the water was oversaturated with respect to calcite but undersaturated with respect to dolomite. Using a mass-balance approach, the composition of the stream water at downstream locations was predicted by dissolution of dolomite (a maximum of 0.16 mmol s-1) and by a minor amount of calcite precipitation (a maximum of 0.03 mmol s-1). In September 1994, there were increases in the Mg, Ca, and total inorganic carbon (TIC) mass fluxes that were due to the dissolution of dolomite (SIdolomiteSI is saturation index) and calcite (SIcalcite2 of the water should decrease downstream; however, we found an increase in the partial pressure of CO2 along the stream. The source of this additional CO2 is thought to be microbial degradation of bat guano. The decomposition of bat guano appeared to change the composition of the stream water during the period the bats are in the cave, and this change was reflected in the composition of the stream water collected in September 1994. Based on the length of the flowpath and on the average velocity of the water along the flowpath, the travel time of water in this karst stream is less than 4 days. The reactions that control the chemistry of the karst water must be those with equally short characteristic times: the dissolution of dolomite and calcite, CO2 exchange, and microbial degradation of organic matter

Water balance investigations in the Bohinj region,, 1997, Tri?i? N. , Bat M. , Polajnar J. , Pristov J.

Experimental design, technique and protocol in fluorometric tracing of ground water, 1997, Smart C. C. , Zabo L.
Detector-spectrofluorometer and water-filter fluorometry provide two complementary tools in tracer testing. Current practice largely relies on the former technique, despite some limitations in quality assurance. A set of technical enhancements have been undertaken on the Turner Designs Model 10 Series filter fluorometer to redress this imbalance by improving efficiency. In addition, improvements in protocol are suggested. A preliminary framework for optimal design of tracer tests is presented. Nevertheless, there remain barriers to wider deployment of filter fluorometers, notably in complex traces and borehole tests.

Results 16 to 30 of 140
You probably didn't submit anything to search for