Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That beach is a shore consisting of sand or gravel deposits [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for atmospheric co2 (Keyword) returned 17 results for the whole karstbase:
Showing 16 to 17 of 17
Do carbonate karst terrains affect the global carbon cycle?, 2013, Martin Jonathan B. , Brown Amy, Ezell John

Carbonate minerals comprise the largest reservoir of carbon in the earth’s lithosphere, but they are generally assumed to have no net impact on the global carbon cycle if rapid dissolution and precipitation reactions represent equal sources and sinks of atmospheric carbon. Observations of both terrestrial and marine carbonate systems indicate that carbonate minerals may simultaneously dissolve and precipitate within different portions of individual hydrologic systems. In all cases reported here, the dissolution and precipitation reactions are related to primary production, which fixes atmospheric CO2 as organic carbon, and the subsequent remineralization in watersheds of the organic carbon to dissolved CO2. Deposition of carbonate minerals in the ocean represents a flux of CO2 to the atmosphere. The dissolution of oceanic carbonate minerals can act either as a sink for atmospheric CO2 if dissolved by carbonic acid, or as a source of CO2 if dissolved through sulfide oxidation at the freshwater-saltwater boundary. Since dissolution and precipitation of carbonate minerals depend on ecological processes, changes in these processes due to shifts in rainfall patterns, earth surface temperatures, and sea level should also alter the potential magnitudes of sources and sinks for atmospheric CO2 from carbonate terrains, providing feedbacks to the global carbon cycle that differ from modern feedbacks.


Quaternary glacial cycles: Karst processes and the global CO2 budget, 2013, Larson Erik B. , Mylroie John E.

Extensive research has been conducted investigating the relationship between karst processes, carbonate deposition and the global carbon cycle. However, little work has been done looking into the relationship between glaciations, subsequent sea level changes, and aerially exposed land masses in relation to karstic processes and the global carbon budget. During glaciations sea-level exposed the world’s carbonate platforms. with the sub-aerial exposure of the platforms, karst processes can occur, and the dissolution of carbonate material can commence, resulting in the drawdown of CO2 from the atmosphere as HCO3−. Furthermore, the material on the platform surfaces is primarily aragonite which is more readily soluble than calcite allowing karst processes to occur more quickly. During glaciations arctic carbonates and some of the temperate carbonates are blanketed in ice, effectively removing those areas from karst processes. Given the higher solubility of aragonite, and the extent of carbonate platforms exposed during glaciations, this dissolution balances the CO2 no longer taken up by karst processes at higher latitudes that were covered during the last glacial maximum The balance is within 0.001 GtC / yr, using soil pCO2 (0.005 GtC / yr assuming atmospheric pCO2) which is a difference of <1% of the total amount of atmospheric CO2 removed in a year by karst processes. Denudation was calculated using the maximum potential dissolution formulas of Gombert (2002). On a year to year basis the net amount of atmospheric carbon removed through karstic processes is equivalent between the last glacial maximum and the present day, however, the earth has spent more time in a glacial configuration during the quaternary, which suggests that there is a net drawdown of atmospheric carbon during glaciations from karst processes, which may serve as a feedback to prolong glacial episodes. This research has significance for understanding the global carbon budget during the quaternary.


Results 16 to 17 of 17
You probably didn't submit anything to search for