Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That coefficient of transmissivity; coefficient of transmissibility is an obsolete term replaced by the term transmissivity.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for quality (Keyword) returned 208 results for the whole karstbase:
Showing 16 to 30 of 208
Pertes du Gave d'Ossau et naissance du Neez (Pyr.-Atl., Fr.), 1992, Bauer J. , Oller G. , Sabrier R.
SINKS OF THE OSSAU GAVE AND SOURCE OF THE NEEZ RIVER (PYRENEES) - A Gave is a mountain torrent in the Pyrenees. The water supply of the city of Pau is depending almost entirely on a karstic spring called Oeil du Neez (the Neez Eye, which means spring of the Neez). LOeil du Neez is the main resurgence - among several others - of water sinks in the Gave bed across the urgonian limestone ridge of Arudy. Development of this karstic system through the complex structural setting of a frontal thrust has been favoured by the geomorphic evolution of the Arudy basin, dammed to the north by a morainic loop, but also by the presence of highly suitable hydrodynamic and tectonic conditions (water head and fractures network). Water quality of the Oeil du Neez is closely depending on Gave water quality. However, the catchment area proper, of this resurgence, exerts its own chemical influence.

The karst aquifer of the well-known Fontaine de Vaucluse has been recently studied, results have been got about delimitation of the system and its working. Geological data (lithology and structure) have allowed to delimit an 1115 Km2 intake area including Ventoux-Lure north facing range (1,909-1,826 m) and the Plateau which is prolonging it southwards (Fig. 1 and 2). The average altitude of the whole area, obtained by balancing elevation belt surfaces, is about 870 m. This elevation squares with results of tracing tests (Fig. 3), environmental physical, chemical and isotopic tracings, that allow to value a 850 m average altitude for the intake area (Fig. 4). The moisture balance has been computed from an altitude belts climatic model, using local rain an temperature gradients (Fig. 5 and Table II), because the weather network is not representative. So, rainfalls rise of about 55 mm per 100 m elevation and temperature decreases of about 0.5-degrees-C per 100 m. The consequence of these two antagonist phenomena is the quasi constant value of actual evapotranspiration on each altitude belt. With the Fig. 7 organigram, curves of effective rainfalls and infiltration coefficient versus elevation can be plotted (Fig. 6). This computation shows that 3/4 of the total and the whole of dry season effective rainfalls are provided by the part of the intake area situated above the average altitude: on the lowest belt, effective rainfalls are only 120 mm per year and increase to 1380 mm on the upper section (Fig. 8 and Table 1). The weighted effective rainfalls are about 570 mm per year for the whole intake area. Hydrodynamical and physico-chemical studies show, despite its large size, the weak inertia of the system, so proves its good karstification, that confirms for the whole system the pin-point speleological observations. The discharge of the spring, which average value is 21 m3.s-1 (only 18 for the last ten years), can exceed 100 m3.s-1 and the minimum has never been lower than 3.7 m3.s-1 (Fig. 9). When it rains on the intake area, the increase of the discharge is very sudden in a rainy period : one to four days. This short delay is due to seepage through epikarst and unsaturated zone. During dry periods, the spring reaction is deadened, due to storage in the unsaturated zone. The silica content distribution was plotted during several hydrokinematical phases (Fig. 10). It shows: an almost unimodal distribution for the 8 km2 fissured limestone aquifer of Groseau; a multimodal one for the 1115 km2 karst aquifer of Fontaine de Vaucluse. This proves that karstification is more important than size in the response of the system. Weak summer rainfalls do not influence the discharge, nevertheless they influence chemistry of the spring water, and so interrupts the water depletion phasis. Then, the decrease of discharge can continue after the end of the chemical depletion phasis, water which is overflowing after summer rainfalls (in a dry period) is influenced hy the chemistry of seepage water : on the graph of a principal components analysis, done on chemical variables. an hysteresis phenomenon can be seen (Fig. 11). A discriminant analysis (Fig. 12) confirms that these autumn waters, with high ratio seepage tracers, are not reserve waters from the saturated zone. The ratio of reserve water in the total discharge, is preponderant: 3/4 and 2/3 respectively of the yearly runoff volumes for 1981 and 1982 (Fig. 13), but an important part of these reserves can be stored in the unsaturated zone. This storage capacity can be valued by different means: transposing to Vaucluse (1115 km2) the volume measured on another karst system in the Pyrenees (13 km2); it gives about 100 million m2; using setting parameters of Bezes model (1976) on the same aquifer: it gives 113 million m3; using depletion curves, that show, for instance during the 1989 summer and autumn dry period, a 80 million m3 volume. In all cases, we get a value of about one hundred million m3 for the storage capacity of the unsaturated zone. With a 20 m range of fluctuation for the water table and with a 10(-2) specific yield, on a 500 to 1,000 km2 saturated zone, the zone of fluctuation can release about 10 to 20 million m3. Then, the volume of water stored in the whole saturated zone, with a 300 m minimum thickness (depth of the waterlogged pit of the Fontaine), a 500 km2 minimum surface and a 10(-3) specific yield, is about 150 million m3, including 27 million m3 stored in the channels. So, the unsaturated zone represents a significant part of the whole storage capacity and most of the yearly renewable reserves. Paradoxically, the biggest french spring is not tapped at all; as its intake area is neither a regional nor a national park, no general protection covers it : because of its good karstification, the vulnerability of the system is important. Good quality of water is attributable to the low population and human activities density on the intake area (4 A great part of the intake area is uncultivated (large forest and ''garrigues'' areas). Due to the lack of surface water and scantness of soils, agriculture is not intensive (lavender, thyme, sage and bulk wheat fields. meadowlands). On the mountainous zone, roads are salted in winter and snowmelt water can reach a significantly high chloride ratio than in a natural climatic functioning (for instance 25 mg.l-1 in Font d'Angiou where the ratio would have been 3 mg.l-1). As tourism is developing both on the mountain and on the plateau, the management of the highest intake area must be carefully held: its part is preponderant in the feeding of the system

Threat of Triassic water quality deterioration as a results of planned closing of ores mines in the Olkusz region. [in Polish], 1993, Niewdana, Jzef

This study outlines an improved method, DIVERSITY, for delineating and rating groundwater sensitivity. It is an acronym for Dlspersion/VElocity-Rated SensitivITY, which is based on an assessment of three aquifer characteristics: recharge potential, flow velocity, and flow directions. The primary objective of this method is to produce sensitivity maps at the county or state scale that illustrate intrinsic potential for contamination of the uppermost aquifer. Such maps can be used for recognition of aquifer sensitivity and for protection of groundwater quality. We suggest that overriding factors that strongly affect one or more of the three basic aquifer characteristics may systematically elevate or lower the sensitivity rating. The basic method employs a three-step procedure: (1) Hydrogeologic settings are delineated on the basis of geology and groundwater recharge/discharge position within a terrane. (2) A sensitivity envelope or model for each setting is outlined on a three-component rating graph. (3) Sensitivity ratings derived from the envelope are extrapolated to hydrogeologic setting polygons utilizing overriding and key factors, when appropriate. The three-component sensitivity rating graph employs two logarithmic scales and a relative area scale on which measured and estimated values may be plotted. The flow velocity scale ranging from 0.01 to more than 10,000 m/d is the keystone of the rating graph. Whenever possible, actual time-of-travel values are plotted on the velocity scale to bracket the position of a sensitivity envelope. The DIVERSITY method was developed and tested for statewide use in Kentucky, but we believe it is also practical and applicable for use in almost any other area

The occurrence of ozone concentrations and exposure indices related to the adverse effects of ozone upon vegetation are reported for four Finnish background stations. In Finland, ozone concentrations are often near the background tropospheric values of cn. 30 ppb. Very high concentrations are not observed. The maximum 1-h average in this data set was 79 ppb. The exposure parameter, which accumulates growing season 1-h average concentrations above a 40 ppb base-line in daylight hours, gave clearly different exposure sums for the stations. These values varied between 4000 and 8500 ppb-h in the southern archipelago, 3000-6500 ppb-h in the southern coastal region, 2000-4000 ppb-h in central parts of the country, and 400-1000 ppb-h in the northern parts of the country. The date of the start of the vegetative season is important in high northern latitudes, because the spring maximum of ozone concentrations is relatively intense compared to the summer maximum. In northern Scandinavia, ozone exposures are particularly sensitive to the date of the start of the growing season. The long daylight period in northern Scandinavia is less important in this respect, since during the growing season ozone concentrations are usually below 40 ppb during the morning and evening hours. A good correlation was found between growing season average concentrations of the sum of gaseous HNO3 and particulate NO3-, and on ozone exposure index which accumulates concentrations above a 40 ppb base-line, confirming the anthropogenic origin of the elevated ozone exposures

During the rainy season deterioration in the quality of water, supplied through dug wells and tube wells, near an abandoned limestone quarry was reported. The abandoned quarry is now being used as an urban waste disposal site. The problem was further complicated by hospitalization of several inhabitants who were using this water for domestic purposes. Looking into the consequences, chemical analysis of water from the quarry, dug wells and tube wells was carried out. The water was found to be contaminated. The transportation of pollutants from the quarry to the groundwater system was facilitated by karst features. Furthermore, four major sources domestic waste disposal, water conservation structures, landfills, and water wells contributing to pollution were identified. This case study is an attempt to provide an understanding of how the karst features facilitate groundwater contamination. It will help us answer a few questions such as why karst hydrogeology deserves special attention in urban expansion and what protective measures should be planned in view of rapid urbanization

Influence of karst hydrology on water quality management in southeast South Australia, 1994, Emmett A. J. , Telfer A. L.

Southeast South Australia has large reserves of potable groundwater, generally close to the surface. European settlement has had a major impact on groundwater quality due to the presence of extensive karst in the unconfined aquifer. Historically, industries such as cheese factories were often sited close to karst features (e.g. caves and sinkholes) because they provided a convenient means of waste disposal. Although most have long since closed, they have left a legacy of pollution plumes of varying sizes. In Mount Gambier, the main regional centre, the presence of both exposed and subterranean karst features provided a ''perfect system'' for the disposal of stormwater. Prior to the provision of a sewerage system within Mount Gambier, all toilet and household wastewaters were disposed to ground. These activities and the subsequent problems that began emerging in the 1960s have led to a concerted effort over the last 20 years to change the philosophy of waste disposal and to generate an understanding and responsibility by those who live in the region and depend on groundwater for the major part of their water supply. Mount Gambier's water supply comes from the Blue Lake. Groundwater inflow from a highly karstic Tertiary limestone aquifer provides 90% of the recharge to the Blue Lake. The lake is a high-value resource in a high-risk environment and in order to minimize this risk, a water-quality management plan for the lake is currently being developed

A ground water catchment was instrumented as a karst hydrology and water quality laboratory to develop long-term flow and water quality data. This catchment located in Woodford and Jessamine Counties in the Inner Bluegrass, Central Kentucky encompasses approximately 1620 ha, 40 water wells, over 400 sinkholes, 2 karst windows, and 1 sinking stream. The land uses consist of approximately 59% beef pasture, horse farm, and golf course; 16% row crops; 6% orchard; 13%forest; and 6% residential. The instrumentation consisted of a recording rain gage, an H-flume, a water stage recorder, and an automated water sampler. Flow data for 312 days were analyzed, and a peak flow rate prediction equation, specific to this catchment, was developed Recession curves were analyzed and found to be of two distinct mathematical forms, log curves and exponential curves. Prediction equations were good for the log-type recession curve and fair for the exponential-type recession curve. For the exponential recessions, the peak flow rate was found to be bimodally distributed The recession events were classified as either high flow or low flow, with the point of separation at 113 L/s. It was hypothesized that the flow system was controlled by pipe flow above 113 L/s and by open channel flow below 113 L/s. Subsequent analysis resulted in adequate prediction for the low flow events. Explained variation associated with the high flow events was low and attributed to storage in the karst system that was not incorporated into the predictor equation

The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are located on karat terrain. Nitrate concentrations were measured in several karat springs in Southeastern West Virginia in order to determine the impact of animal agriculture on nitrate pollution of the karst ground water system. Karst basins with 79, 51, 16, and 0 percent agriculture had mean nitrate concentrations of 15.8, 12.2, 2.7, and 0.4 mg/l, respectively. A strong linear relationship between nitrate concentration and percent agricultural land was shown. Median nitrate concentration increased about 0.19 mg l(-1) per percent increase in agricultural land. Weather patterns were also found to significantly affect the median nitrate concentrations and the temporal variability of those concentrations. Lower nitrate concentrations and lower temporal variability were observed during a severe drought period. It was concluded that agriculture was significantly affecting nitrate concentrations in the karst aquifer. Best management practices may be one way to protect the ground water resource

Quality of karst fissure waters from the Krakw-Cz?stochowa Jurassic formations and the source of their degradation. [in Polish], 1996, R?kowski Jacek, R?kowski Andrzej, Pacholewski Andrzej

Gypsum karst of the Baltic republics., 1996, Narbutas Vytautas, Paukstys Bernardas
The Baltic Republics of Estonia, Latvia and Lithuania have karst areas developed in both carbonate and gypsiferous rocks. In the north, within the Republic of Estonia, Ordovician and Silurian limestones and dolomites crop out, or are covered by glacial Quaternary sediments. To the south, in Latvia and Lithuania, gypsum karst is actively developing in evaporites of Late Devonian (Frasnian) age. Although gypsum and mixed sulphate-carbonate karst only occupy small areas in the Baltic countries, they have important engineering and geo-ecological consequences. Due to the rapid dissolution of gypsum, the evolution of gypsum karst causes not only geological hazards such as subsidence, but it also has a highly adverse effect on groundwater quality. The karst territory of the Baltic states lies along the western side of the area, called the Great Devonian Field that form part of the Russian Plain. Within southern Latvia and northern Lithuania there is an area, exceeding 1000 sq. km, where mature gypsum karst occurs at the land surface and in the subsurface. This karst area is referred to here as the Gypsum Karst Region of the Baltic States. Here the surface karst forms include sinkholes, karst shafts, land subsidence, lakes and dolines. In Lithuania the maximum density of sinkholes is 200 per sq. km; in Latvia they reach 138 units per sq. km. Caves, enlarged dissolution voids and cavities are uncommon in both areas.

An examination of short-term variations in water quality at a karst spring in Kentucky, 1996, Ryan M. , Meiman J. ,
Water quality at many karst springs undergoes very high amplitude but relatively brief degradation following influxes of runoff. Accurately recording transient variations requires more rigorous sampling strategies than traditional methods, A pilot study to determine the usefulness of high-frequency, flow-dependent sampling strategies, combined with coincidental quantitative dye tracer tests, was implemented in the Big Spring Ground-Water Basin in Mammoth Cave National Park, Kentucky. Data recorded following two separate runoff events showed that the concentrations of two nonpoint source pollutants, fecal coliform bacteria and suspended sediment, greatly exceeded prerunoff event values for very short periods of time, A phreatic conduit segment, calculated at 17 million liters in volume, instantaneously propagated head changes, caused by direct runoff entering the aquifer, from the ground-water inputs to Big Spring, A significant delay between the initial increases in discharge and the arrival of direct runoff, as indicated by a steady decrease in specific conductance, represented the time required to displace this volume of phreatic water, The delay showed that sampling a karst spring only during peak discharge would be an unreliable sampling method. Runoff from two different subcatchments was tagged with tracer dye and the timing of the passage of the resultant dye clouds through Big Spring were compared to water quality variations, Distinct lag times between the arrival of direct runoff at Big Spring and the bacteria and suspended sediment waveforms were shown through the concurrent quantitative tracer tests to be related to the areal distribution of land-cover type within the basin

Herbicides in karst groundwater in southeast West Virginia, 1996, Pasquarell G. C. , Boyer D. G. ,
A field study was conducted to determine the karst groundwater impact of herbicide application to feed crops in support oil livestock production in southeast West Virginia, Grab samples were taken on a weekly/biweekly schedule at three resurgences for two agriculturally intensive karst watersheds. Two surface water sites were also sampled, The samples were analyzed for the presence of 12 different analytes: atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), its two metabolites, desethylatrazine (2-chloro-4-ethylamino-6-amino-1,2,5-triazine) and desisopropylatrazine (2-chloro-4-amino-6-isopropylamino-1,3,5-triazine), and nine additional triazine herbicides. Little impact was detected at the two surface water sites. In contrast, 6 of the 10 herbicides were detected in at least two of the three resurgences. Three of them, atrazine (ATR), metolachlor [2-chloro-N(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-acetamide], and simazine [2-chloro-4-6-(ethylamino)-s-triazine], were detected in more than 10% of all samples at all three resurgences, ATR and desethylatrazine (DES) were detected in more than 50% of samples at all three resurgences; median ATR values were 0.060, 0.025, and 0.025 mu g/L. DAR* the ratio of DES to ATR plus DES, was used to differentiate atrazine leaching following storage for long periods in the soil, from transport that bypassed deethylation in the soil through sinkholes and other solutionally developed conduits. DAR* was low (median of <0.5) and highly varied during the periods immediately following ATR application, indicating that significant quantities of ATR were present. In the winter, a release of ATR metabolites from the soil was evidenced by a steadier, and higher DAR* (median of 0.64). The maximum detected ATR concentration was 1.20 mu g/L, which is within the USEPA maximum contaminant level of 3 mu g/L

Agricultural chemicals at the outlet of a shallow carbonate aquifer, 1996, Felton Gk,
A groundwater catchment, located in Woodford and Jessamine Counties in the Inner Bluegrass of Kentucky, was instrumented to develop long-term flow and water quality data. The land uses on this 1 620-ha catchment consist of approximately 59% in grasses consisting of beef farms, horse farms, and a golf course; 16% row crops; 6% orchard; 13% forest; and 6% residential. Water samples were analyzed twice a week for, Ca, Mg, Na, Cl-, HCO3-, SO4=, NO3-, total solids, suspended solids, fecal coliforms, fecal streptococci, and triazines. Flow rate and average ambient temperature were also recorded. No strong linear relationship was developed between chemical concentrations and other parameters. The transient nature of the system was emphasized by one event that drastically deviated from others. Pesticide data were summarized and the ''flushing'' phenomena accredited to karst systems was discussed. The total solids content in the spring was consistent at approximately 2.06 mg/L. Fecal bacteria contamination was well above drinking water limits (fecal coliform and fecal streptococci averages were 1 700 and 4 300 colony-forming-units/100 mL, respectively) and the temporal variation in bacterial contamination was not linked to any other variable

Results 16 to 30 of 208
You probably didn't submit anything to search for