Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That neptunian deposits is younger sediment or sedimentary rock that infills pre-existing cavities, such as grikes, dolines or cave passages, in older rocks. the most common form is a fissure fill, known as a neptunian dike. neptunian deposits occupy voids in non-karstic as well as karstic rocks, and the combination of void and fill may subsequently be buried by still younger rocks. they may thus become part of a paleokarst [9].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for calcrete (Keyword) returned 21 results for the whole karstbase:
Showing 16 to 21 of 21
Palaeohydrogeological control of palaeokarst macro-porosity genesis during a major sea-level lowstand: Danian of the UrbasaAndia plateau, Navarra, North Spain, 2007, Baceta Juan Ignacio, Wright V. Paul, Beavingtonpenney Simon J. , Pujalte Victoriano

An extensive palaeokarst porosity system, developed during a pronounced mid-Paleocene third-order lowstand of sea level, is hosted in Danian limestones of the Urbasa–Andia plateau in north Spain. These limestones were deposited on a 40–50 km wide rimmed shelf with a margin characterised by coralgal buildups and coarse-grained bioclastic accumulations. The sea-level fall that caused karstification was of approximately 80–90 m magnitude and 2.5 Ma in duration. During the exposure, a 450 m wide belt of sub-vertical margin-parallel fractures developed a few hundred metres inboard of the shelf edge. Most fractures are 90–100 m deep, average 1 m in width, and are associated with large erosional features created by collapse of the reefal margin. Inland from the fracture belt, three superimposed laterally extensive cave systems were formed over a distance of 3.5 km perpendicular to shelf edge, at depths ranging from 8–31 m below the exposure surface. The palaeocaves range from 0.3 to 2 m in height, average 1.5 m high. They show no evidence of meteoric processes and are filled with Thanetian grainstones rich in reworked Microcodium, a lithology that also occurs infilling the fractures. The caves are interpreted as due to active corrosion at the saline water–fresh-water mixing zone. Caves are missing from the shelf edge zone probably because the fractures beheaded the meteoroic lens preventing mixing-zone cave development beyond the fracture zone. Towards the platform interior, each cave system passes into a prominent horizon, averaging 1 m in thickness, of spongy porosity with crystal silt infills and red Fe-oxide coatings. The spongy horizons can be traced for 5.5 km inboard from the cave zone and occur at 10.5 m, 25 m and 32 m below the exposure surface. In the inland zone, two additional horizons with the same spongy dissolution have been recognised at depths of 50 m and 95 m. All are analogous to Swiss-cheese mixing-zone corrosion in modern carbonate aquifers and probably owe their origins to microbiallymediated dissolution effects associated with a zone of reduced circulation in marine phreatic water. In the most landward sections a number of collapse breccia zones are identified, but their origin is unclear. The palaeokarst system as a whole formed during the pulsed rise that followed the initial sea-level drop, with the three main cave-spongy zones representing three successive sea-level stillstands, recorded by stacked parasequences infilling large erosional scallops along the shelf margin. The geometry of the palaeo-mixing zones indicates a low discharge system, and together with the lack of meteoric karstic features favours a semi-arid to arid climatic regime, which is further supported by extensive calcrete-bearing palaeosols occurring in coeval continental deposits.


Palaeohydrogeological control of palaeokarst macro-porosity genesis during a major sea-level lowstand: Danian of the UrbasaAndia plateau, Navarra, North Spain, 2007, Baceta J. I. , Wright V. P. , Beavingtonpenney S. J. , Pujalte V.

An extensive palaeokarst porosity system, developed during a pronounced mid-Paleocene third-order lowstand of sea level, is hosted in Danian limestones of the Urbasa–Andia plateau in north Spain. These limestones were deposited on a 40–50 km wide rimmed shelf with a margin characterised by coralgal buildups and coarse-grained bioclastic accumulations. The sea-level fall that caused karstification was of approximately 80–90 m magnitude and 2.5 Ma in duration. During the exposure, a 450 m wide belt of sub-vertical margin-parallel fractures developed a few hundred metres inboard of the shelf edge. Most fractures are 90–100 m deep, average 1 m in width, and are associated with large erosional features created by collapse of the reefal margin. Inland from the fracture belt, three superimposed laterally extensive cave systems were formed over a distance of 3.5 km perpendicular to shelf edge, at depths ranging from 8–31 m below the exposure surface. The palaeocaves range from 0.3 to 2 m in height, average 1.5 m high. They show no evidence of meteoric processes and are filled with Thanetian grainstones rich in reworked Microcodium, a lithology that also occurs infilling the fractures. The caves are interpreted as due to active corrosion at the saline water–fresh-water mixing zone. Caves are missing from the shelf edge zone probably because the fractures beheaded the meteoroic lens preventing mixing-zone cave development beyond the fracture zone. Towards the platform interior, each cave system passes into a prominent horizon, averaging 1 m in thickness, of spongy porosity with crystal silt infills and red Fe-oxide coatings. The spongy horizons can be traced for 5.5 km inboard from the cave zone and occur at 10.5 m, 25 m and 32 m below the exposure surface. In the inland zone, two additional horizons with the same spongy dissolution have been recognised at depths of 50 m and 95 m. All are analogous to Swiss-cheese mixing-zone corrosion in modern carbonate aquifers and probably owe their origins to microbially mediated dissolution effects associated with a zone of reduced circulation in marine phreatic water. In the most landward sections a number of collapse breccia zones are identified, but their origin is unclear. The palaeokarst system as a whole formed during the pulsed rise that followed the initial sea-level drop, with the three main cave-spongy zones representing three successive sea-level stillstands, recorded by stacked parasequences infilling large erosional scallops along the shelf margin. The geometry of the palaeo mixing zones indicates a low discharge system, and together with the lack of meteoric karstic features favours a semi-arid to arid climatic regime, which is further supported by extensive calcrete-bearing palaeosols occurring in coeval continental deposits.


On the formation of dissolution pipes in Quaternary coastal calcareous arenites in Mediterranean settings, 2010, De Waele Jo, Lauritzen Steinerik, Parise Mario

A large number of uniform cone-shaped dissolution pipes has been observed and studied in Quaternary coastal calcareous arenites in Apulia and Sardinia (Italy) and Tunisia. These cylindrical tubes have a mean diameter of 52·8 cm and are up to 970 cm deep (mean depth for sediment-free pipes is 1·38 m). They generally have smooth walls along their length, are perfectly vertical and taper out towards their bottoms. Their development is not influenced by bedding nor fractures. Sometimes their walls are coated by a calcrete crust. Their morphology has been studied in detail and their relationships with the surrounding rocks and with the environment have been analysed. The perfectly vertical development is a clear evidence of their genesis controlled by gravity. The depth of the dissolution pipes can be described by an exponential distribution law (the Milanovic distribution), strongly suggesting they developed by a diffusion mechanism from the surface vertically downward. We believe dissolution pipes preferentially form in a covered karst setting. Local patches of soil and vegetation cause infiltration water to be enriched in carbon dioxide enhancing dissolution of carbonate cement and local small-scale subsidence. This process causes the formation of a depression cone that guides infiltrating waters towards these spots giving rise to the downward growth of gravity-controlled dissolution pipes. A change of climate from wetter phases to drier and hotter ones causes the formation of a calcrete lining, fossilizing the pipes. When the pipes become exposed to surface agents by erosion of the sediment cover or are laterally breached the loose quartz sand filling them may be transported elsewhere. 


Interpretation of ancient epikarst features in carbonate successions A note of caution, 2011, Immenhauser Adrian, Rameil Niels

In shallowmarine carbonate successions of the Phanerozoic, evidence for shorter-lived subaerial exposure stages of ancient carbonate seafloors is commonly found in the presence of small-scale epi-karst solution pits in discontinuity surfaces. Under favorable conditions, these solution features are accompanied by soil features including calcretes or root traces, alveolar septal structures, petrographic evidence such as pendant cements, circumgranular cracks or pisoliths, bleaching and staining of carbonate rocks or circumstantial geochemical evidence. Perhaps more often, however, ancient carbonate successions lack undisputable evidence for meteoric karsting. Using a well exposed case example from the Aptian of Oman, we here document that the superficial visual field inspection of solution pits in discontinuity surfaces may lead to erroneous interpretations. Outcrops at
JabalMadar, a diapiric structure, allowfor an in-depth analysis of dissolution features in the regionally extensive top Shu'aiba discontinuity. The solution pits discussed here were investigated for their stratigraphic position, their orientation relative to bedding planes, diagenetic and petrographic features and their potential relation to extensional fractures related to the updoming of Jabal Madar. The mainmessage brought forward, is that under burial conditions, spatially localized, hypogenic carbonate leachingmay formfeatures that are easily mistaken for ancient meteoric epikarst. These features preferentially form in interstratal positions where fractured, massive carbonate rocks are capped by a major discontinuity surface overlain by non-fractured argillaceous sediments. Thus,while dissolution–reprecipitation processes in the burial phreatic realmare omni-directional in permeable carbonates, low-permeability, argillaceous fines are not, or to amuch lesser extent, prone to chemical corrosion.
As a consequence carbonate-aggressive burial fluids leach out pits at the carbonate–shale interface. These appear to protrude perpendicular as bowl-shaped depressions into the underlying limestones and are – in the case examples documented here – preferentially aligned along factures. These findings have significance for the interpretation of ancient epikarst features in shallow marine carbonate successions


Karst in deserts, 2013, Webb J. A. , White S.

Hot deserts are characterized by low mean annual rainfall (o250 mm, o1000) and very high evapotranspiration, so karst processes are inhibited. However, karst features are abundant and well developed in many deserts around the world. Salt caves occur predominantly in this environment and develop rapidly despite the arid climate, because they are formed mainly by rare, but intense, rain events. Deserts also preserve, relatively unaltered, gypsum and carbonate karst that formed in prior wetter climates or by hypogene processes. Carbonate karst, which is the most common karst in hot deserts, is modified very slowly by desert processes, including dissolution and salt crystallization, which fragments bedrock and speleothems


The formation of the pinnacle karst in Pleistocene aeolian calcarenites (Tamala Limestone) in southwestern Australia, 2015,

A spectacular pinnacle karst in the southwestern coastal part of Western Australia consists of dense fields of thousands of pinnacles up to 5 m high, 2 m wide and 0.5–5 m apart, particularly well exposed in Nambung National Park. The pinnacles have formed in the Pleistocene Tamala Limestone, which comprises cyclic sequences of aeolian calcarenite, calcrete/microbialite and palaeosol. The morphology of the pinnacles varies according to the lithology in which they have formed: typically conical in aeolianite and cylindrical in microbialite. Detailed mapping and mineralogical, chemical and isotopic analyses were used to constrain the origin of the pinnacles, which are residual features resulting mainly from solutional widening and coalescence of solution pipeswithin the Tamala Limestone. The pinnacles are generally joined at the base, and the stratigraphy exposed in their sides is often continuous between adjacent pinnacles. Some pinnacles are cemented infills of solution pipes, but solution still contributed to their origin by removing the surrounding material. Although a number of pinnacles contain calcified plant roots, trees were not a major factor in their formation. Pinnacle karst in older, better-cemented limestones elsewhere in theworld is similar inmorphology and origin to the Nambung pinnacles, but is mainly influenced by joints and fractures (not evident at Nambung). The extensive dissolution associatedwith pinnacle formation at Nambung resulted in a large amount of insoluble quartz residue, which was redeposited to often bury the pinnacles. This period of karstification occurred at aroundMIS 5e, and therewas an earlier, less intense period of pinnacle development duringMIS 10–11. Both periods of pinnacle formation probably occurred during the higher rainfall periods that characterise the transition from interglacial to glacial episodes in southern Australia; the extensive karstification around MIS 5e indicates that the climate was particularly humid in southwestern Australia at this time.


Results 16 to 21 of 21
You probably didn't submit anything to search for