Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stream development is the ratio of actual tortuous stream length between two points on a straight line connecting these points [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for dam site (Keyword) returned 23 results for the whole karstbase:
Showing 16 to 23 of 23
Karstification of aquifers interspersed with non-soluble rocks: From basic principles towards case studies, 2010, Romanov D. , Kaufmann G. , Hiller T.

We have developed a numerical model able to describe the karstification of aquifers in fractured rocks containing soluble (limestone or gypsum) and insoluble layers. When water is flowing along fractures crossing the soluble layers, it is able to dissolve the material there, to increase the aperture width of the conduit, and consequently to increase the local hydraulic conductivity. Depending on the thickness and the distribution of these layers, the dissolution can be active only for limited periods, or during the whole evolution time. Fractures located in insoluble layers do not change at all. We are interested in the integral effect of these local processes and study four simplified scenarios of karstification along a prominent wide conduit crossing a fractured limestone block. We keep the initial and the boundary conditions the same for all scenarios and vary only in the amount and the distribution of the soluble material. We demonstrate that aquifers in 100% limestone, without any insoluble layers, develop along areas with high hydraulic conductivities and high hydraulic gradients, creating channel like pathways. On the other hand aquifers containing soluble layers with limited thickness develop faster and exhibit diffuse patterns determined by the chemical properties of the rock. The second part of the paper is a step towards modeling of real karst systems. We present the evolution of an aquifer located in the vicinity of a large hydraulic structure. All initial and boundary conditions, except the amount and the distribution of the soluble rock, remain the same for all scenarios. As a material example for the bedrock, we chose Gipskeuper from an aquifer along the Birs river in Switzerland. This rock consists of soluble gypsum layers and insoluble clays and marls, with typical layer thickness in the range of millimeters to centimeters. The basic processes discussed in the first part of the paper remain valid. We demonstrate that large insoluble zones can impair the karstification process and even completely block it, while areas with thin soluble layers can provide a preferential pathway and decrease the evolution times considerably. Finally we show that the evolution of the leakage rates and the head distribution within the aquifer can sometimes reveal misleading information about the stage of karstification and the safeness of the dam. Our model can be used not only to study simplified geological settings and basic processes, but also to address some of the complications arising when modeling real aquifers.


Dams and Reservoirs in Karst , 2011, Milanovic, Petar

Construction of dams and reservoirs in karst is historically known as a very risky task. Inspite of very detailed geophysical investigations and repeated sealing treatments, the possibility for dam failure cannot be eliminated. In the karst environment, with its highly random distribution of dissolution features, some uncertainties always remain. The final determination of the adequacy of sealing measures comes after the first reservoir impoundment or even later. In many worldwide examples, watertightness treatment during dam construction was only partially successful, with some remedial work after impoundment being quite common. However, in some cases, the problem is simply too complicated and cannot be overcome. Special approaches have to be undertaken in order to prevent seepage from reservoirs. The key elements are a good geological map and proper geophysical investigations. These investigations are key prerequisites of dam construction in karst and cutting costs through restricting them usually results in increasing the chance of project failure. To deal with karst successfully, innovation, engineering practice, execution feasibility, and commercial understanding have to be undertaken. Grouting alone is definitely not adequate in the case of large karst conduits. Special treatment of large caverns and flexibility during grout curtain execution, including modifications and adaptations on the basis of the geological findings, should be the standard procedure for dam construction in karst to minimize risk. Such an approach is the basic worldwide rule in the fight against leakage from dam sites and reservoir abutments.


Interconnection of karst systems and flow piracy through karst collapse in layered carbonate rocks, 2011, Qian H. , Wang S. , Yan F. , Yuan D.

A new mode of interconnecting karst systems separated by impermeable bed due to karst collapse was discovered in the study of dam site in Guizhou, South China. Karst flow may be diverted from conduits in one layer to another, thus forming a connected karst system. Comprehensive methodology and techniques used in the investigation included surface geological surveys, geophysical investigations, special drilling, and tracer tests. In the stage of preliminary study, the karst conduits were considered to be developed separately along individual karstified layers. However, further investigation shows that karst collapse may be associated with conduit and cavern development, damaging the impermeable bed and its watertight function. Accordingly, a new pattern of karst conduit system was reestablished. The results obtained enable the dam designer to plan a reliable alternative for seepage protection. © 2009 Springer-Verlag.


MODELLING THE EVOLUTION OF KARST AQUIFERS IN THREE DIMENSIONS/Conceptual models and realistic scenarios Inaugural dissertation/ zur Erlangung des Doktorgrades Dr. rer. nat. am Fachbereich Geowissenschaften im Institut fur Geologische Wissenschaften der Fr, 2013, Hiller, Thomas

This work presents the development of three dimensional karst evolution models for various settings and conditions. As karst aquifers are very sensitive to changes of their hydraulic boundary conditions a comprehensive understanding of the governing processes inside a karst aquifer is indispensable. Especially if a karst aquifer is inuenced by anthropogenic utilization like e.g. the construction of a dam site, the resulting changes inside the aquifer need to be understood as good as possible to prevent any unpredictable incidents. The use of numerical models to simulate the development of a karst aquifer is therefore a suitable tool in the preliminary investigations. It will be shown that simple three dimensional damsite models can be used to evaluate the parameters that control the karst aquifer evolution. Based on these simple models an enhanced three dimensional model of a real damsite is developed. This model is used to simulate the evolution of the aquifer close to this damsite and to expose how the construction of the dam inuenced the nearby bedrock signicantly. It is shown that the karstied zone around the dam site is the reason for the subsidence of an adjacent highway. The presented numerical results can be veried by eld observations. Additionally to the damsite models a three dimensional model approach is presented that describes the formation of large collapse dolines. Collapse dolines are signicant surface features of karst landscapes and their evolution which is usually linked to a subsurface karst system is of high interest in the karst community. To simulate the evolution and interaction of such a doline system, a three dimensional model with several spatially distributed dolines is used. There, based on the concept of a mechanically weakened crushed zone, the evolution over time is presented. The applied collapsing mechanism used in this work also allows to estimate the bedrock removal and surface lowering over time. The determined rates are in good agreement with values reported in literature


Hypogenic Karstification and Conduit System Controlling by Tectonic Pattern in Foundation Rocks of the Salman Farsi Dam in South-Western Iran, 2013, Koleini M. , Van Rooy J. L. , Bumby A.

The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of southwestern Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality


Hypogenic Karstification and Conduit System Controlling by Tectonic Pattern in Foundation Rocks of the Salman Farsi Dam in South-Western Iran, 2013, Koleini Mehran, Van Rooy Jan Louis, Bumby Adam

The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of southwestern Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality.


Hypogenic Karstification and Conduit System Controlling by Tectonic Pattern in Foundation Rocks of the Salman Farsi Dam in South-Western Iran, 2013, Koleini M. , Louis J. , Rooy V. , Bumby A.

The Salman Farsi dam project is constructed on the Ghareh Agahaj River about 140km south of Shiraz city in the Zagros Mountains of southwestern Iran. This tectonic province of southwestern Iran is characterized by a simple folded sedimentary sequence. The dam foundation rocks compose of the Asmari Formation of Oligo-miocene and generally comprise of a variety of karstified carbonate rocks varying from strong to weak rocks. Most of the rocks exposed at the dam site show a primary porosity due to incomplete diagenetic recrystallization and compaction. In addition to these primary dispositions to weathering, layering conditions (frequency and orientation of bedding) and the subvertical tectonic discontinuities channeled preferably the infiltrating by deep-sited hydrothermal solutions. Consequently the porosity results to be enlarged by dissolution and the rocks are expected to be karstified and to develop cavities in correspondence of bedding, major joint planes and fault zones. This kind of karsts is named hypogenic karsts which associated to the ascendant warm solutions. Field observations indicate strong karstification and vuggy intercalations especially in the middle part of the Asmari succession. The biggest karst in the dam axis which identified by speleological investigations is Golshany Cave with volume of about 150,000 m3. The tendency of the Asmari limestone for strong dissolution can alert about the seepage from the reservoir and area of the dam locality


Evaluating temporal changes in hydraulic conductivities near karst-terrain dams: Dokan Dam (Kurdistan-Iraq) , 2015, Dafny Elad, Tawfeeq Kochar Jamal, Ghabraie Kazem

Dam sites provide an outstanding opportunity to explore dynamic changes in the groundwater flow regime because of the high hydraulic gradient rapidly induced in their surroundings. This paper investigates the temporal changes of the hydraulic conductivities of the rocks and engineered structures via a thorough analysis of hydrological data collected at the Dokam Dam, Iraq, and a numerical model that simulates the Darcian component of the seepage. Analysis of the data indicates increased seepage with time and suggests that the hydraulic conductivity of the rocks increased as the conductivity of the grout curtain decreased. Conductivity changes on the order of 10−8 m/s, in a 20-yr period were quantified using the numerical analysis. It is postulated that the changes in hydraulic properties in the vicinity of Dokan Dam are due to suspension of fine materials, interbedded in small fissures in the rocks, and re-settlement of these materials along the curtain. Consequently, the importance of the grout curtain to minimize the downstream seepage, not only as a result of the conductivity contrast with the rocks, but also as a barrier to suspended clay sediments, is demonstrated. The numerical analysis also helped us to estimate the proportion of the disconnected karstic conduit flow to the overall flow.


Results 16 to 23 of 23
You probably didn't submit anything to search for