Search in KarstBase
![]() |
![]() |
The Dead Sea, the Holocene terminal lake of the Jordan River catchment, has fluctuated during its history in response to climatic change. Biblical records, calibrated by radiocarbon-dated geological and archaeological evidence, reinforce and amplify the chronology of the lake-level fluctuations. There are three historically documented phases of the Dead Sea in the Biblical record: low lake levels c. 2000-1500 B.C.E. (Before Common Era); high lake levels c. 1500-1200 century B.C.E.; and low lake levels between c. 1000 and 700 B.C.E. The Biblical evidence indicate that during the dry periods the southern basin of the Dead Sea dried up, a fact that was not clear from the geological data.
The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U?Th dated 2.46± 0.10 to 2.10±0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46?2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.
Mount Sedom is a salt diapir, on the southwestern shore of the Dead Sea, which has been rising above the local base level throughout the Holocene. Karst development within the salt body has kept pace with the rising, forming sub-horizontal cave passages with vertical shafts. Wood fragments found embedded in flood sediments that were deposited in the cave passages yielded 14C ages ranging from ca. 7100 to 200 YBP. A paleoclimatic sequence was constructed, based on parameters that include: relative abundance of plant types or floral communities, the elevations of the corresponding cave passages and the ratio of their width to present passage width. The results were correlated to the Holocene sedimentary sequence of the Dead Sea Basin, and other features associated with shifting lake levels. Moister climatic stages are indicated by relatively abundant wood remains, by wide cave passages and by elevated outlets, indicating high Dead Sea level. Arid periods are marked by a scarcity of wood remains, by narrow cave passages and by low-level outlets. The Holocene sequence of Mount Sedom is subdivided into ten climatic stages: A moist stage in the early Holocene, older than 7000 YBP, and nine subsequent stages of drier climate, fluctuating between conditions that are somewhat drier, up to somewhat moister than those of today. The Dead Sea Level dropped from ca. -300 MSL during the early moist period to -400 MSL or lower during the subsequent arid periods.
A geophysical approach is presented for analyzing processes of subsurface salt dissolution and associated sinkhole hazard along the Dead Sea. The implemented methods include Seismic Refraction (SRFR), Transient Electromagnetic Method (TEM), Electric Resistivity Tomography (ERT), and Ground Penetration Radar (GPR). The combination of these methods allows the delineation of the salt layer boundaries, estimating its porosity distribution, finding cavities within the salt layer, and identifying deformations in the overlying sediments. This approach is shown to be useful for anticipating the occurrence of specific sinkholes, as demonstrated on both shores of the Dead Sea. These sinkholes are observed mainly along the edge of a salt layer deposited during the latest Pleistocene, when Lake Lisan receded to later become the Dead Sea. This salt layer is dissolved by aggressive water flowing from adjacent and underlying aquifers which drain to the Dead Sea. Sinkhole formation is accelerating today due to the rapid fall of the Dead Sea levels during the last 30 years, caused by anthropogenic use of its water.
There are two conflicting models of sinkhole development along the Dead Sea (DS). The first one considers structural control on sinkholes, constraining them to tectonic lineaments. This hypothesis is based on seismic reflection studies suggesting that sinkholes are the surface manifestations of active neotectonic faults that may serve as conduits for under-saturated groundwater, enabling its access across aquiclude layers. Another hypothesis, based on results of multidisciplinary geophysical studies, considers the salt edge dissolution front as themajor site of sinkhole formation. This hypothesis associates sinkholes with karstification of the salt edge by deep and shallow undersaturated groundwater. Our recent seismic reflection and surface wave studies suggest that salt formed along the active neotectonic faults. Sinkholes form in a narrow strip (60–100 m wide) along a paleo-shoreline constrained by faults and alluvial fans which determined the edge of the salt layer. This scenario reconciles the two major competing frameworks for sinkhole formation.
![]() |
![]() |