Search in KarstBase
![]() |
![]() |
Some methodological modifications are suggested to improve a DRASTIC-based method as a reliable predictor of microbial contamination in extensively fractured and subordinately karstified carbonate aquifers. Those modifications will allow a better assessment of vulnerability induced by the concentrated infiltration of surface runoff in two different scenarios: (a) when the karst system is entirely located within an unsaturated aquifer and (b) when the karst system is partially located within a saturated medium. The effectiveness of the update method has been experimentally verified by comparing the vulnerability values with the results of a hydrogeological and microbiological study ad a test site.
On the basis of work accomplished by the European COST Action 620, a comprehensive approach to groundwater vulnerability and contamination risk assessment is proposed, taking into account the special characteristics of Slovene karst aquifer systems. The Slovene Approach is consistent with national environmental legislation and enables comparison across European countries. The method integrates temporal hydrological variability in the concept of groundwater vulnerability and offers a new possibility to combine surface and groundwater source and resource protection, which required the development of a new K factor (karst groundwater flow within the saturated zone). The risk analysis considers intrinsic vulnerability, contamination hazards and the importance of the source or resource. It has been first applied to the Podstenjšek springs catchment in southwestern Slovenia and validated by means of two multi-tracer tests with a total of six injection points. The resulting vulnerability, hazard and risk maps are plausible, and the validation confirmed the vulnerability assessment at the representative sites that were selected for tracer injection. The maps provide improved source protection zones and make it possible to identify land mismanagement and to propose better practices for future planning.
Vulnerability maps illustrate the potential threat of contaminants to groundwater and can be considered as important tools for land-use planning and related legislation. For karst areas with characteristic preferential infiltration conditions, vulnerability maps are also excellent tools for source and resource protection. However, the resulting qualitative maps are often inconsistent and even contradictive and thus might lead to inconclusive vulnerability assessments. The results of a validation of vulnerability maps produced using four different methods, DRASTIC, GLA, PI and EPIK, are reported for a karst area in southwest Germany. By means of measured hydraulic and transport parameters of the geological sequence, numerical simulations were used based on a conceptual model for the area under study. The mean transit time through the unsaturated zone (resource protection) was used as the validation parameter. The study demonstrates that the highest level of accuracy is achieved with the GLA- and PI methods. Both DRASTIC and EPIK are not able to incorporate highly variable distributions and thickness of cover sediments and their protective properties in the respective mapping procedure. Thus, vulnerability maps produced with DRASTIC, EPIK, and related methods should be used with care when employed in vulnerability assessments for land use planning and related decision-making.
Les cartes de vulnerabilite illustrent la menace potentielle des contaminants envers les eaux souterraines, et peuvent etre considerees comme des outils importants en matiere d'amenagement foncier et de reglementation associee. Sur les domaines karstiques, caracterises par des conditions d'infiltration preferentielle, ces cartes sont egalement d'excellents outils de protection des sources et des ressources. Cependant, les cartes qualitatives resultantes sont generalement incoherentes voire contradictoires, et peuvent par la-meme mener a des evaluations de vulnerabilite peu concluantes. La presente etude expose les resultats de validation de cartes de vulnerabilite produites selon quatre methodes differentes (DRASTIC, GLA, PI et EPIK), dans le cas d'un domaine karstique du sud-est de l'Allemagne. Par le biais des parametres de transport et hydrauliques mesures sur la sequence geologique, des simulations numeriques basees sur un modele conceptuel du secteur d'etude ont ete utilisees. Les temps de transit moyens a travers la zone non saturee (protection de la ressource) ont ete utilises comme parametres de validation. L'etude demontre que le niveau maximum de precision est obtenu par les methodes GLA et PI. Dans la phase de cartographie, les methodes EPIK et DRASTIC sont incapables d'integrer une forte variabilite dans les distributions et les epaisseurs de sediments de couverture, ainsi que dans leurs potentiels de protection. Aussi, les cartes de vulnerabilite produites par les methodes DRASTIC et EPIK doivent etre utilisees avec precaution dans le cadre des evaluations de vulnerabilite a but decisionnaire pour les amenagements fonciers.
Los mapas de vulnerabilidad ilustran la amenaza potencial de contaminantes para el agua subterranea y pueden ser considerados herramientas importantes para planeamiento del uso de la tierra y legislacion relacionada. Para areas carsticas con sus caracteristicas condiciones de infiltracion preferencial, los mapas de vulnerabilidad son tambien excelentes herramientas para proteccion de fuentes y recursos. Sin embargo, los mapas cualitativos resultantes son frecuentemente inconsistentes y hasta contradictorios y por lo tanto podrian conducir a evaluaciones de vulnerabilidad no concluyentes. Los resultados de una validacion de mapas de vulnerabilidad producidos usando cuatro metodos diferentes, DRASTIC, GLA, PI y EPIK, son presentados aqui para un area carstica en Alemania suroccidental. Se usaron simulaciones numericas usando parametros hidraulicos y de transporte medidos de la secuencia geologica y basandose en un modelo conceptual del area en estudio. El tiempo promedio de transito a traves de la zona no saturada (proteccion del recurso) fue utilizado como el parametro de validacion. El estudio demuestra que el maximo nivel de precision es alcanzado con los metodos GLA y PI. DRASTIC y EPIK no fueron capaces de incorporar distribuciones altamente variables ni espesor de sedimentos de cubierta y sus propiedades protectivas en el respectivo procedimiento de elaboracion de mapas. Por lo tanto los mapas de vulnerabilidad producidos con DRASTIC, EPIK y metodos relacionados deberian ser usados con cuidado cuando se usen en evaluaciones de vulnerabilidad para planeamiento del uso de tierra
Epikarst zone, due to its peculiar hydrogeologic features and functions, plays a fundamental role in karst morphogenesis and natural protection of groundwater in the conditions of open karst. The presence of epikarst considerably diminishes high vulnerability of groundwaters, generally characteristic for karst systems. Thickness of the epikarst zone is the most important parameter that determines buffering capacity of epikarst with regard to groundwater resources, its ability to retard and neutralize contaminants, hence – the protective role of epikarst with regard to groundwater resources.
The main problem in evaluation of epikarst during groundwater vulnerability assessment is luck of methods for its mapping in area. This paper, based on the analysis of regularities of epikarst morphogenesis, substantiates a possibility to assess variations in thickness of epikarst by distribution of depth of karst dolines.
Maps of doline depth distribution (representing thickness of epikarst) are created for main massifs of the Mountain Crimea, as well as maps of density of dolines and documented caves. Conjugate analysis of these maps from the standpoint of the epikarst concept gives important information about relationship of surface and underground karstification and serves as a basis for accounting for epikarst during groundwater vulnerability assessment in regions of open karst.
High alpine karst plateaus are recharge areas for major drinking water resources in the Alps and many other regions. Well-established methods for the vulnerability mapping of groundwater to contamination have not been applied to such areas yet. The paper characterises this karst type and shows that two common vulnerability assessment methods (COP and PI) classify most of the areas with high vulnerability classes. In the test site on the Hochschwab plateau (Northern Calcareous Alps, Austria), overlying layers are mostly absent, not protective or even enhance point recharge, where they have aquiclude character. The COP method classifies 82% of the area as highly or extremely vulnerable. The resulting maps are reasonable, but do not differentiate vulnerabilities to the extent that the results can be used for protective measures. An extension for the upper end of the vulnerability scale is presented that allows identifying ultra vulnerable areas. The proposed enhancement of the conventional approach points out that infiltration conditions are of key importance for vulnerability. The method accounts for karst genetical and hydrologic processes using qualitative and quantitative properties of karst depressions and sinking streams including parameters calculated from digital elevations models. The method is tested on the Hochschwab plateau where 1.7% of the area is delineated as ultra vulnerable. This differentiation could not be reached by the COP and PI methods. The resulting vulnerability map highlights spots of maximum vulnerability and the combination with a hazard map enables protective measures for a manageable area and number of sites.
Managed Aquifer Recharge (MAR) is an emerging sustainable technique that has already generated successful results and is expected to solve many water resource problems, especially in semi-arid and arid zones. It is of great interest for karst aquifers that currently supply 20–25% of the world’s potable water, particularly in Mediterranean countries. However, the high heterogeneity in karst aquifers is too complex to be able to locate and describe them simply via field observations. Hence, as compared to projects in porous media, MAR is still marginal in karst aquifers.
Accordingly, the present work presents a conceptual methodology for Aquifer Rechargeability Assessment in Karst – referred to as ARAK. The methodology was developed noting that artificial recharge in karst aquifers is considered an improbable challenge to solve since karst conduits may drain off recharge water without any significant storage, or recharge water may not be able to infiltrate. The aim of the ARAK method is to determine the ability of a given karst aquifer to be artificially recharged and managed, and the best sites for implementing artificial recharge from the surface. ARAK is based on multi-criteria indexation analysis modeled on karst vulnerability assessment methods. ARAK depends on four independent criteria, i.e. Epikarst, Rock, Infiltration and Karst. After dividing the karst domain into grids, these criteria are indexed using geological and topographic maps refined by field observations. ARAK applies a linear formula that computes the intrinsic rechargeability index based on the indexed map for every criterion, coupled with its attributed weighting rate. This index indicates the aptitude for recharging a given karst aquifer, as determined by studying its probability first on a regional scale for the whole karst aquifer, and then by characterizing the most favorable sites. Subsequently, for the selected sites, a technical and economic feasibility factor is applied, weighted by the difficulties that could occur when trying to undertake a recharge operation at a selected site from the surface. Each site is finally rated by its rechargeability index – the product of two factors, the intrinsic rechargeability and the feasibility index. ARAK was applied to the region of Damour, Lebanon, on the Mediterranean coast where uncontrolled exploitation of public and private wells led to its partial salinization by seawater. A MAR system in Damour region represents an interesting solution to cope with salinization and the insufficiency of the resource
The karst environment is one of the most challenging in terms of groundwater, engineering and environmental issues. Geophysical methods can provide useful subsurface information in karst regions concerning, for instance, hazard estimation or groundwater exploration and vulnerability assessment. However, a karst area remains a very difficult environment for any geophysical exploration; selection of the best-suited geophysical method is not always straightforward, due to the highly variable and unpredictable target characteristics. The state of the art is presented, in terms of the contributions made by geophysical methods to karst-system exploration, based on extensive analysis of the published scientific results. This report is an overview and should be used as a preliminary methodological approach, rather than a guideline.
An approach is presented for the hydrogeological conceptualisation of karst systems. The KARSYS approach helps hydrogeologists working in karst regions to address in a pragmatic and efficient way the three following questions. (1) Where does the water of a karst spring come from? (2) Through which underground routes does it flow? (3) What are the groundwater reserves and where are they? It is based on a three dimensional model of the carbonate aquifer geometry (3D geological model) coupled to a series of simple fundamental principles of karst hydraulics. This provides, within a limited effort, a consistent hydrogeological conceptual model of karst flow systems within any investigation area. The level of detail can be adjusted according to the targeted degree of confidence. Two examples of its application are presented; the approach was first applied with a low level of detail on a national scale in order to assess the groundwater reserves in karst aquifers in Switzerland, suggesting a groundwater volume of 120 km3. On a regional scale, it was applied with a higher level of detail to some selected karst systems in order to assess their hydropower potential. The KARSYS approach may provide very useful information for water management improvement in karst regions (vulnerability assessment, impact assessment, water supply, flood hazards, landslides, etc.). It leads, in a very cost-effective manner, to a new and highly didactic representation of karst systems as well as to new concepts concerning the delineation of catchment areas in karst regions.
![]() |
![]() |