Search in KarstBase
![]() |
![]() |
![]() |
![]() |
Groundwater is a significant component of the world’s water balance and accounts for >90 % of usable freshwater. Around the world groundwater is an important source of water for major cities, towns, industries, agriculture and forestry. Groundwater plays a role in the ecological processes and ‘health’ of many surface ecosystems, and is the critical habitat for subterranean aquatic animals (stygofauna). Over-abstraction or contamination of groundwater resources may imperil the survival of stygofauna and other groundwater-dependent ecosystems (GDEs). In two karst areas in Western Australia (Yanchep and Leeuwin-Naturaliste Ridge), rich stygofauna communities occur in cave waters containing submerged tree roots. These aquatic root mat communities were listed as critically endangered because of declining groundwater levels, presumably caused by lower rainfall, groundwater abstraction, and/or forest plantations. Investigation of the hydrology and ecology of the cave systems was considered essential for the conservation and recovery of these threatened ecological communities (TECs). This thesis investigated the hydrology and ecology of one of the TECs, located in the Jewel Cave karst system in the Leeuwin-Naturaliste Ridge. A multi-disciplinary approach was used to explore aspects pertinent to the hydrology and ecology of the groundwater system.
Thermoluminescence dating of the limestone suggested that development of the karst system dates from the Early Pleistocene and that caves have been available for colonisation by groundwater fauna since that time. Speleogenesis of the watertable maze caves occurred in a flank margin setting during earlier periods of wetter climate and/or elevated base levels. Field mapping and leveling were used to determine hydrologic relationships between caves and the boundaries of the karst aquifer. Monitoring of groundwater levels was undertaken to characterise the conditions of recharge, storage, flow and discharge. A hydrogeologic model of the karst system was developed.
The groundwater hydrograph for the last 50 years was reconstructed from old photographs and records whilst radiometric dating and leveling of stratigraphic horizons enabled reconstruction of a history of watertable fluctuations spanning the Holocene to Late Pleistocene. The watertable fluctuations over the previous 50 years did not exceed the range of fluctuations experienced in the Quaternary history, including a period 11,000 to 13,000 years ago when the watertable was lower than the present level.
The recent groundwater decline in Jewel Cave was not reflected in the annual rainfall trend, which was above average during the period (1976 to 1988) when the major drop in water levels occurred. Groundwater abstraction and tree plantations in nearby catchments have not contributed to the groundwater decline as previously suggested. The period of major watertable decline coincided with a substantial reduction in fire frequency within the karst catchment. The resultant increase in understorey vegetation and ground litter may have contributed to a reduction in groundwater recharge, through increased evapotranspiration and interception of rainfall. To better understand the relationships between rainfall, vegetation and fire and their effects on groundwater recharge, an experiment is proposed that involves a prescribed burn of the cave catchment with before-after monitoring of rainfall, leaf-area, ground litter, soil moisture, vadose infiltration and groundwater levels.
Molecular genetic techniques (allozyme electrophoresis and mitochondrial DNA) were used to assess the species and population boundaries of two genera and species of cave dwelling Amphipoda. Populations of both species were largely panmictic which was consistent with the hydrogeologic model. The molecular data supported the conclusion that both species of amphipod have survived lower watertable levels experienced in the caves during the Late Pleistocene. A mechanism for the colonization and isolation of populations in caves is proposed.
Multi Dimensional Scaling was used to investigate patterns in groundwater biodiversity including species diversity, species assemblages, habitat associations and biogeography. Faunal patterns were related to abiotic environmental parameters. Investigation of hydrochemistry and water quality characterized the ecological water requirements (EWR) of the TEC and established a baseline against which to evaluate potential impacts such as groundwater pollution.
The conservation status of the listed TEC was significantly improved by increasing the number of known occurrences and distribution range of the community (from 10 m2 to > 2 x 106 m2), and by showing that earlier perceived threatening processes (rainfall decline, groundwater pumping, tree plantations) were either ameliorated or inoperative within this catchment. The GDE in the Jewel Cave karst system may not have been endangered by the major phase of watertable decline experienced 1975-1987, or by the relatively stable level experienced up until 2000. However, if the present trend of declining rainfall in southwest Western Australia continues, and the cave watertable declines > 0.5 m below the present level, then the GDE may become more vulnerable to extinction.
The occurrence and distribution of aquatic root mat communities and related groundwater fauna in other karst catchments in the Leeuwin-Naturaliste Ridge is substantially greater than previously thought, however some of these are predicted to be threatened by groundwater pumping and pollution associated with increasing urban and rural developments. The taxonomy of most stygofauna taxa and the distribution of root mat communities is too poorly known to enable proper assessment of their conservation requirements. A regional-scale survey of stygofauna in southwest Western Australia is required to address this problem. In the interim, conservation actions for the listed TECs need to be focused at the most appropriate spatial scale, which is the karst drainage system and catchment area. Conservation of GDEs in Western Australia will benefit from understanding and integration with abiotic groundwater system processes, especially hydrogeologic and geomorphic processes.
This thesis investigates the hydrology and ecology of a threatened aquatic root mat community in the Jewel Cave karst system in the Leeuwin-Naturaliste Ridge, Western Australia. Development of the karst system dates from the Early Pleistocene and the caves have been available for colonisation by groundwater fauna since that time. Speleogenesis of the watertable maze caves occurred in a flank margin setting during earlier periods of wetter climate and/or elevated base levels. Watertable fluctuations over the last 50 years did not exceed the range experienced in the Quaternary history. The recent groundwater decline in Jewel Cave was not related to rainfall, nor groundwater abstraction nor nearby tree plantations. However, it did coincide with a reduction in fire frequency within the karst catchment. The resultant increase in understorey vegetation and ground litter may have reduced groundwater recharge through increased evapotranspiration and interception of rainfall. The populations of two genera and species of cave dwelling Amphipoda are largely panmictic. Both species have survived lower watertable levels during the Late Pleistocene. A mechanism for the colonization and isolation of populations in caves is proposed. Faunal patterns (including species diversity, species assemblages, habitat associations and biogeography) were related to abiotic environmental parameters. The ecological water requirements of the community were determined as a baseline for evaluation of impacts such as groundwater pollution. If rainfall continues to decline, and the cave watertable declines > 0.5 m below the present level, then the groundwater ecosystem may become more vulnerable to extinction. The taxonomy and distribution of root mat communities is poorly known and a regional-scale survey is required to properly assess their conservation requirements. Meanwhile, conservation actions for the communities need to be focused at the scale of the karst drainage system and catchment area.
The last two decades were particularly prolific in historical biogeography because of new information introduced from other sciences, such as paleogeography, by the development of quantitative methods and by molecular phylogeny. Subterranean beetles represent an excellent object of study for historical biogeography because they are the group with the best representation in the subterranean domain. In addition, species have reduced mobility, display different degrees of adaptations to life in caves and many specialists work on this group. Three processes have shaped the present distribution of the tribe Leptodirini (Coleoptera Cholevinae) in the world: dispersal, vicariance, and extinction. Therefore, three successive stages can be established in the space-time evolution of Leptodirini: (1) dispersal from a center of origin in the present area(s); (2) dispersal, extinction and vicariance among the present area(s); and (3) colonization and speciation in the subterranean domain. The Romanian Leptodirini, especially those from Western Carpathians is examined with respect to these processes. Their pattern of distribution in different massifs and at different altitudes is discussed, with possible explanations from a historical biogeographic point of view.
Features including colonization routes (stream capture) and the existence of both epigean and cave-adapted hypogean populations make Astyanax mexicanus an attractive system for investigating the subterranean evolutionary time necessary for acquisition of the troglomorphic form. Using published sequences, we have estimated divergence times for A. mexicanus using: 1) two different population-level mitochondrial datasets (cytochrome b and NADH dehydrogenase 2) with both strict and relaxed molecular clock methods, and 2) broad phylogenetic approaches combining fossil calibrations and with four nuclear (recombination activating gene, seven in absentia, forkhead, and α-tropomyosin) and two mitochondrial (16S rDNA and cytochrome b) genes. Using these datasets, we have estimated divergence times for three events in the evolutionary history of troglomorphic A. mexicanus populations. First, divergence among cave haplotypes occurred in the Pleistocene, possibly correlating with fluctuating water levels allowing the colonization and subsequent isolation of new subterranean habitats. Second, in one lineage, A. mexicanus cave populations experienced introgressive hybridization events with recent surface populations (0.26-2.0 Ma), possibly also correlated with Pleistocene events. Finally, using divergence times from surface populations in the lineage without evidence of introgression as an estimate, the acquisition of the troglomorphic form in A. mexicanus is younger than 2.2 (fossil calibration estimates) – 5.2 (cytb estimate) Ma (Pliocene).
The evolution of troglobites comprises three distinct problems: cave colonization by an epigean ancestor, the evolution of troglomorphies, and intra-cave speciation. The study of cave-dwelling planthoppers has contributed much to our understanding of troglobite evolution and provides useful model systems to test various aspects of the theoretic framework developed in recent years. Most promising in this respect are taxa with several closely related but independently evolved troglobiontic lineages, such as on the Canary Islands, in Queensland/Australia and on the Hawaiian Archipelago. Closely related species often occur in caves with comparable ecological parameters yet differ in their age. Here we use comparative age estimates for Australian and Hawaiian cave cixiids to assess the dynamics of reductive evolutionary trends (evolution of troglomorphy) in these taxa and cave planthoppers in general. We show that the degree of troglomorphy is not correlated with the age of cave lineages. Morphological alteration may not be used to draw conclusions about the phylogenetic age of cave organisms, and hypotheses based on such assumptions should be tested in light of these findings.
A taxonomic survey of the lamp flora from electrically lit passages in Mammoth Cave, Mammoth Cave National Park, identified 28 species. Overall, cyanobacteria were dominant represented by 14 species (50% of the total), green algae had eight species (29%), and six diatoms species (21%) were present. There was not a correlation between species diversity and temperature, but there is a general trend of increasing diversity with warmer temperatures. There were two algal or cyanobacterial species identified in this study that overlapped with previous studies. There is a lack of continuity between previous studies only having one species identified in more than one study. This suggests a high algal turnover and possible colonization rates
![]() |
![]() |
![]() |
![]() |