Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That brackish water is water containing from 1000 to 10,000 ppm of total dissolved solids [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for arizona (Keyword) returned 42 results for the whole karstbase:
Showing 16 to 30 of 42
Sedimentology and Paleomagnetism of Sediments, Kartchner Caverns, Arizona, 1999, Hill, C. A.
Clastic deposits in Kartchner Caverns consist of coarse deposits (breakdown, pebble gravel and micaceous sand) and fine-grained deposits (fault gouge and blocky clay). The coarse deposits are all related to the vadose history of the cave, while the fine-grained deposits are related to the phreatic history of the cave and, probably, to the beginning of vadose conditions. The illite clay in fault zones was possibly derived from the underlying Pinal Schist. The clay mineral rectorite is most likely a hydrothermal alteration of illite within the faults prior to the dissolution of the cave. The blocky clay unit is autochthonous sediment that was at least partially derived from residual fault gouge clay at the time of cave dissolution. The pebble gravels were deposited during different flood events in different parts of the cave, with a lateral fining of micaceous sand in back-wash areas. The blocky clay, pebble gravel, and micaceous sand are all paleomagnetically normal and date from the Brunhes/Matuyama normal (<~780 Ka). The clay mineral nontronite probably reconstituted from residual illite/rectorite under high pH, low Eh flood-water conditions within the cave environment

Geology of Kartchner Caverns State Park, Arizona, 1999, Jagnow, D. H.
Kartchner Caverns is developed entirely within the Mississippian Escabrosa Limestone in an isolated fault block along the east flank of the Whetstone Mountains in southeastern Arizona. The geology of the cave, along with the detailed surface geology, was studied and mapped in preparation for commercial development of the cave. Seven black to dark-gray marker beds throughout the lower Escabrosa section provided the key for unlocking the geology of Kartchner Caverns and the surface area. A 130 m measured stratigraphic section shows the distribution of these key organic-rich marker beds. More than 60 mapped faults cut Kartchner Caverns and probably date to the Miocene emplacement of the Kartchner block. Three geologic cross-sections illustrate how Kartchner Caverns developed near the 1408 m msl base level, and then stoped upwards along faults to resistant ceiling beds. Kartchner Caverns has been stable in its development for >50Ka.

Geophysical Studies at Kartchner Caverns State Park, Arizona, 1999, Lange, A. L.
Geophysical studies over Kartchner Caverns State Park mapped structure and groundwater patterns beneath valley alluvium and determined the geophysical expression of the caverns at the surface. Three techniques were employed: electromagnetics (EM), gravity, and natural potential (NP). Electromagnetic traverses in the area failed to detect the voids, owing to the very low conductivity of the carbonate rock. On the other hand, the EM method succeeded in defining the boundary between carbonate rock and alluvium, and in detecting the high-conductivity underflow beneath the drainage system. Resolution of the gravity survey over outcrop was limited to ~0.1 mgal, due to severe terrain effects. Nevertheless, two of the three major cavern passages were expressed as gravity lows at the surface, and fifteen additional small gravity anomalies could be the effect of fracture zones or unexposed caves. East of the carbonate block, the gravity profiles delineated the range-front fault and afforded interpretations of bedrock structure beneath valley fill. Natural-potential profiles, coincident with those of the gravity survey, produced a prominent compound anomaly over the mapped caverns. The 55 mV NP high was flanked by broad lows measuring ~15 mV over two of the main cavern galleries. The high was incised by a third low over a middle passage of the caverns. The lows are tentatively attributed to filtration downward toward the cave ceilings; the highs, to evapotranspiration from a deeper groundwater reservoir. Elsewhere over the outcrop, continuous NP trends are the likely expressions of faulting and fracturing, possibly accompanied by solution activity

Discovery and History of Kartchner Caverns, Arizona, 1999, Tufts, R. , Tenen, G.
Efforts to give Kartchner Caverns protective park status required over 13 years to complete following the caves discovery by Gary Tenen and Randy Tufts in 1974. These efforts involved the discoverers, selected cavers, the Kartchner family, the Nature Conservancy, and the Arizona State governmentespecially Arizona State Parks. Throughout that period, the cave and the efforts to conserve it were kept secret from the wider caving community and the public. Once in State Parks hands, extensive baseline testing was conducted before development began to help ensure that the cave environment is preserved. Cave environmental and show-cave experts have been involved in development planning and implementation. Surface facilities and a major part of the cave are set to open to the public in late 1999. The continuing support of cavers, the public, and Arizona government will be necessary to ensure that Kartchner Caverns is preserved in excellent condition.

Invertebrate Cave Fauna of Kartchner Caverns, Kartchner Caverns, Arizona, 1999, Welbourn, W. C.
The invertebrate cave fauna of Kartchner Caverns, Kartchner Caverns State Park, Cochise Co., Arizona, was surveyed between 1989 and 1991. Thirty-eight invertebrate species were recorded during the study, including (11%) troglobites, 19 (50%) troglophiles, 1 trogloxene and 12 (32%) accidentals. Of the remaining, 1 was an obligate parasite and the other a guanophile. Most of the Kartchner Caverns cave fauna depend upon guano deposited by a summer colony of Myotis velifer. The dominant arthropods were mites found in the guano.

Variation of karstic permeability between unconfined and confined aquifers, Grand Canyon region, Arizona, 1999, Huntoon Pw. .
Most of the ground water in the Grand Canyon region circulates to springs in the canyon through the thick, deeply buried, karstified Cambrian through Mississippian carbonate sectionThese rocks are collectively called the lower Paleozoic carbonates and comprise the Redwall-Muav aquifer where saturatedThe morphologies of the caves are primarily a function of whether the carbonates are unconfined or confined, a distinction that has broad significance for groundwater exploration and which appears to be generally transferable to other carbonate regionsCaves in unconfined high-gradient environments tend to be highly localized, partially saturated, simple tubes, whereas those in confined low-gradient settings are saturated 2- or even 3-dimensional mazesThe highly heterogeneous distribution of the unconfined conduits makes for difficult drilling targets, whereas the more ubiquitously distributed confined mazes are far easier to targetThe distinctions between the storage characteristics within the two classes is probably even more importantThere is minimal groundwater storage in the unconfined systems because they are well drainedIn contrast, the saturated mazes exhibit maximal storageConsequently, system responses to major storm recharge events in the unconfined systems is often dominated by flow-through rather than the pulse-through hydraulics as found in the confined systemsSpring discharges from the unconfined systems tends to be both flashy and highly variable from season to season, but total dissolved solids are smallIn contrast, the pulse-through hydraulics in the artesian systems causes spring discharge responses to be highly moderated and, in the larger basins, remarkably steadyBoth total dissolved solids and temperatures in the waters from the confined aquifers tend to be elevated because most of the water is derived from storageKarst permeability is created by the flow system, consequently predicting where the permeability is best developed in a carbonate section involves determining how circulation should be ideally organized through an examination of the geometry of the flow systemThe areas where flow concentrates are the areas where karstification will maximize, provided enough time has elapsed to allow dissolution to adjust to the imposed boundary conditionsThe rate of adjustment in the Grand Canyon region appears to be related to the degree of saturationThe artesian systems are far better adjusted to hydraulic gradients than the unconfined systems, a finding that probably implies that there is greater contact between the solvent and rock in the saturated confined systems

Breccia-Pipe and Geologic Map of the Southwestern Part of the Hualapai Indian Reservation and Vicinity, Arizona, 1999, Billingsley G. H. , Wenrich K. J. , Huntoon P. W. , Young A. A.

Discussion: ''Geophysical Studies at Kartchner Caverns State Park, Arizona'', 2000, Green, D. J.

Reply: ''Geophysical Studies at Kartchner Caverns State Park, Arizona'', 2000, Lange, A. L.

Variability of karstic permeability between unconfined and confined aquifers, Grand Canyon region, Arizona, 2000, Huntoon P. W. ,
Most of the ground water in the Grand Canyon region circulates to springs in the canyon through the thick, deeply buried, karstified Cambrian-Mississippian carbonate section. These rocks are collectively called the lower Paleozoic carbonates and comprise the Redwall-Muav aquifer where saturated. The morphologies of the caves in the Grand Canyon are primarily a function of whether the carbonates are unconfined or confined, a distinction that has broad significance for ground-water exploration and which appears to be generally transferable to other carbonate regions. Caves in unconfined high-gradient environments tend to be highly localized, partially saturated, simple tubes, whereas those in confined low-gradient settings are saturated 2- or even 3-dimensional mazes. The highly heterogeneous, widely spaced conduits in the unconfined settings make for difficult drilling targets, whereas the more ubiquitously distributed mazes in confined settings are far easier to target. The distinctions between the storage characteristics within the two classes are more important. There is minimal ground-water storage in the unconfined systems because cave passages tend to be more widely spaced and are partially drained. In contrast, there is maximum storage in the saturated mazes in the confined systems. Consequently, system responses to major storm recharge events in the unconfined systems are characterized by flow-through hydraulics. Spring discharge from the unconfined systems tends to be both flashy and highly variable from season to season, but total dissolved solids are small. In contrast, the pulse-through hydraulics in the artesian systems cause fluctuations in spring discharge to be highly moderated and, in the larger basins, remarkably steady. Both total dissolved solids and temperatures in the waters from the confined aquifers tend to be elevated because most of the water is derived from storage. The large artesian systems that drain to the Grand Canyon derive water from areally extensive, deep basins where the water has been geothermally heated somewhat above mean ambient air temperatures. Karst permeability is created by the flow system, so dissolution permeability develops most rapidly in those volumes of carbonate aquifers where flow concentrates. Predicting where the permeability should be best developed in a carbonate section involves determining where flow has been concentrated in the geologic past by examining the geometry and hydraulic boundary conditions of the flow field. Karstification can be expected to maximize in those locations provided enough geologic time has elapsed to allow dissolution to adjust to the imposed boundary conditions. The rate of adjustment in the Grand Canyon region appears to be related to the degree of saturation. The artesian systems are far better adjusted to hydraulic gradients than the unconfined systems, a finding that probably implies that there is greater contact between the solvent and rock in the saturated systems. These findings are not arcane distinctions. Rather, successful exploration for ground water and management of the resource is materially improved by recognition of the differences between the types of karst present. For example, the unsaturated conduit karsts in the uplifts make for highly localized, high risk drilling targets and involve aquifers with very limited storage. The conduits have highly variable flow rates, but they carry good quality water largely derived from seasonal flow-through from the surface areas drained. In contrast, the saturated basin karsts, with more ubiquitous dissolutional permeability enhancement, provide areally extensive low risk drilling targets with large ground-water storage. The ground water in these settings is generally of lesser quality because it is derived mostly from long term storage

Karstification associated with groundwater circulation through the Redwall artesian aquifer, Grand Canyon, Arizona, USA, 2000, Huntoon P. W.
The karstified Redwall artesian aquifer discharges significant quantities of water to a small number of large springs in the Marble and Grand canyons of Arizona, U.S.A. The locations of the springs are topographically controlled, being situated on the flanks of regional structural depressions at locations where the depressions have been dissected by the canyons. The springs serve as the lowest potentiometric spill points for the aquifer. Modern caves behind the springs appear to be adjusted to the hydraulic boundary conditions governing circulation through the aquifer. These caves appear to be organized parallel to modern hydraulic gradients and are thus fairly independent of preexisting dissolution-enhanced fracture permeability. This indicates that sufficient time has elapsed since the modern circulation system boundaries became established for the flow regime to have created optimally oriented karstic permeability pathways. Dry remnant caves occur in dewatered sections of the Redwall aquifer which obviously predate dissection of the aquifer by the Colorado River. In contrast to the active caves, the dry caves are characterized by keyhole and slot passageways that are predominantly localized along joints and normal faults. The fractures date largely from late Tertiary extensional tectonism. These older caves are interpreted to be remnants of dissolution conduits in what was a more widespread regional Redwall artesian aquifer prior to incision of the Grand Canyon. Recharge to the Redwall aquifer takes place primarily as vertical circulation in normal fault zones where the faults have propagated upward through the overlying Supai confining layer. The water enters the faults directly from the land surface or as leakage from shallower aquifers that drain to the faults.

Speleogenesis: Evolution of Karst Aquifers., 2000,
The aim of this book is to present advances made in recent decades in our understanding of the formation of dissolutional caves, and to illustrate the role of cave genetic ( speleogenetic ) processes in the development of karst aquifers. From the perspective of hydrogeology, karst ground water flow is a distinct kind of fluid circulation system, one that is capable of self-organization and self-development due to its capacity to dissolve significant amounts of the host rock and transport them out of the system. Fluid circulation in soluble rocks becomes more efficiently organized by creating, enlarging and modifying patterns of cave conduits, the process of speleogenesis. We can assert that karst ground water flow is a function of speleogenesis and vice versa . The advances in cave science are poorly appreciated in what may be termed ?mainstream hydrogeology?, which retains a child-like faith in flow models developed in the sand box. Many karst students also will not be aware of all emerging concepts of cave origin because discussions of them are scattered through journals and books in different disciplines and languages, including publications with small circulation. An understanding of principles of speleogenesis and its most important controls is indispensable for proper comprehension of the evolution of the karst system in general and of karst aquifers in particular. We hope this book will be useful for both karst and cave scientists, and for general hydrogeologists dealing with karst terranes. This book is a pioneer attempt by an international group of cave scientists to summarize modern knowledge about cave origin in various settings, and to examine the variety of approaches that have been adopted. Selected contributions from 44 authors in 15 nations are combined in an integrated volume, prepared between 1994 and 1998 as an initiative of the Commission of Karst Hydrogeology and Speleogenesis, International Speleological Union. Despite a desire to produce an integrated book, rather than a mere collection of papers, the editors' policy has not been directed toward unifying all views. Along with some well-established theories and approaches, the book contains new concepts and ideas emerging in recent years. We hope that this approach will stimulate further development and exchange of ideas in cave studies and karst hydrogeology. Following this Introduction, (Part 1), the book is organized in seven different parts, each with sub-chapters. Part 2 gives a history of speleogenetic studies, tracing the development of the most important ideas from previous centuries (Shaw, Chapter 2.1) through the early modern period in the first half of this century (Lowe, Chapter 2.2) to the threshold of modern times (W.White, Chapter 2.3). The present state of the art is best illustrated by the entire content of this book. Part 3 overviews the principal geologic and hydrogeologic variables that either control or significantly influence the differing styles of cave development that are found. In Chapter 3.1 Klimchouk and Ford introduce an evolutionary approach to the typology of karst settings, which is a taken as a base line for the book. Extrinsic factors and intrinsic mechanisms of cave development change regularly and substantially during the general cycle of geological evolution of a soluble rock and , more specifically, within the hydrogeologic cycle. The evolutionary typology of karst presented in this chapter considers the entire life cycle of a soluble formation, from deposition (syngenetic karst) through deep burial, to exposure and denudation. It helps to differentiate between karst types which may concurrently represent different stages of karst development, and is also a means of adequately classifying speleogenetic settings. The different types of karst are marked by characteristic associations of the structural prerequisites for groundwater flow and speleogenesis, flow regime, recharge mode and recharge/discharge configurations, groundwater chemistry and degree of inheritance from earlier conditions. Consequently, these associations make a convenient basis to view both the factors that control cave genesis and the particular types of caves. Lithological and structural controls of speleogenesis are reviewed in general terms in Chapters 3.2 (Klimchouk and Ford). Lowe in Chapter 3.3 discusses the role of stratigraphic elements and the speleo-inception concept. Palmer in Chapter 3.4 overviews the hydrogeologic controls of cave patterns and demonstrates that hydrogeologic factors, the recharge mode and type of flow in particular, impose the most powerful controls on the formation of the gross geometry of cave systems. Hence, analysis of cave patterns is especially useful in the reconstruction of environments from paleokarst and in the prediction and interpretation of groundwater flow patterns and contaminant migration. Any opportunity to relate cave patterns to the nature of their host aquifers will assist in these applied studies as well. Osborne (Chapter 3.7) examines the significance of paleokarst in speleogenesis. More specific issues are treated by Klimchouk (The nature of epikarst and its role in vadose speleogenesis, Chapter 3.5) and by V.Dublyansky and Y.Dublyansky (The role of condensation processes, Chapter 3.6). Part 4 outlines the fundamental physics and chemistry of the speleogenetic processes (Chapter 4.1) and presents a variety of different approaches to modeling cave conduit development (Chapter 4.2). In Chapter 4.1, the chemical reactions during the dissolution of the common soluble minerals, calcite, gypsum, salt and quartz, are discussed with the basic physical and chemical mechanisms that determine their dissolution rates. As limestone is the most common karst rock and its dissolution is the most complex in many respects, it receives the greatest attention. Dreybrodt (Section 4.1.1) and Dreybrodt and Eisenlohr (Section 4.1.2) provide advanced discussion and report the most recent experimental data, which are used to obtain realistic dissolution rates for a variety of hydrogeologic conditions and as input for modeling the evolution of conduits. Although direct comparisons between theoretical or analytical dissolution rates and those derived from field measurements is difficult, a very useful comparison is provided by W.White (Section 4.1.3). The bulk removal of carbonate rock from karst drainage basins can be evaluated either by direct measurement of rock surface retreat or by mass balance within known drainage basins. All of these approaches make sense and give roughly accurate results that are consistent with theoretical expectations. It is well recognized today that the earliest, incipient, phases of speleogenesis are crucial in building up the pattern of conduits that evolve into explorable cave systems. It is difficult to establish the major controls on these initial stages by purely analytical or intuitive methods, so that modeling becomes particularly important. Various approaches are presented in Chapter 4.2. Ford, Ewers and Lauritzen present the results of systematic study of the propagation of conduits between input and output points in an anisotropic fissure, using a variety of hardware and software models, in series representing the "single input", "multiple inputs in one rank", and "multiple inputs in multiple ranks" cases (Section 4.2.1). The results indicate important details of the competitive development of proto-conduits and help to explain branching cave patterns. In the competition between inputs, some principal tubes in near ranks first link ("breakthrough") to an output boundary. This re-orients the flowfields of failed nearby competitors, which then extend to join the principal via their closest secondaries. The process extends outwards and to the rear, linking up all inputs in a "cascading system". The exploding growth of computer capability during the last two decades has greatly enhanced possibilities for digital modeling of early conduit development. Investigating the growth of a single conduit is a logical first step in understanding the evolution of caves, realized here by Dreybrodt and Gabrov?ek in the form of a simple mathematical model (Section 4.2.2) and by Palmer by numerical finite-difference modeling (Section 4.2.3). The models show that positive feedback loops operate; widening a fracture causes increasing flow through it, therefore dissolution rates increase along it and so on, until finally a dramatic increase of flow rates permits a dramatic enhancement of the widening. This breakthrough event terminates the initial stage of conduit evolution. From then on the water is able to pass through the entire conduit while maintaining sufficient undersaturation to preserve low-order kinetics, so the growth rate is very rapid, at least from a geological standpoint -- usually about 0.001-0.1 cm/yr. The initiation ("breakthrough") time depends critically on the length and the initial width of the fracture and, for the majority of realistic cases, it covers a time range from a few thousand years to ten million years in limestones. The modeling results give a clear explanation of the operation of selectivity in cave genesis. In a typical unconfined karst aquifer there is a great range of enlargement rates along the competing flow routes, and only a few conduits will grow to enterable size. The modeling also provides one starting point (others are discussed in Chapter 5.2) to explain uniform maze patterns, which will be favored by enlargement of all openings at comparable rates where the discharge/length ratio is great enough. Single-conduit modeling has the virtue of revealing how the cave-forming variables relate to each other in the simplest possible way. Although it is more difficult to extend this approach to two dimensions, many have done so (e.g. Groves & Howard, 1994; Howard & Groves, 1995; in this volume ? Ford, Ewers and Lauritzen, Section 4.2.1; Dreybrodt and Siemers, Section 4.2.4, and Sauter and Liedl, Section 4.2.5). The modeling performed by Dreybrodt and Siemers shows that the main principles of breakthrough derived from one-dimensional models remain valid. The evolution of karst aquifers has been modeled for a variety of different geological settings, including also variation in lithology with respect to the dissolution kinetics. Sauter and Liedl simulate the development of conduits at a catchment scale for fissured carbonate rocks with rather large initial openings (about 1 mm). The approach is based upon hydraulic coupling of a pipe network to matrix continuum in order to represent the well-known duality of karst aquifer flow systems. It is also shown how understanding of the genesis of karst aquifers and modeling of their development can assist in characterization of the conduit system, which dominates flow and transport in karst aquifers. An important point that has emerged from cave studies of the last three decades is that no single speleogenetic model applies to all geologic and hydrologic settings. Given that settings may also change systematically during the evolutionary geological cycles outlined above (Chapter 3.1), an evolutionary approach is called for. This is attempted in Part 5, which is organized to give extended accounts of speleogenesis in the three most important settings that we recognize: coastal and oceanic (Chapter 5.1), deep-seated and confined (Chapter 5.2) and unconfined (Chapter 5.3). Each Chapter begins with a review of modern ideas on cave development in the setting, followed by representative case studies. The latter include new accounts of some "classic" caves as well as descriptions of other, little-known cave systems and areas. Readers may determine for themselves how well the real field examples fit the general models presented in the introductory sections. Mylroie and Carew in Chapter 5.1 summarize specific features of cave and karst development in young rocks in coastal and island settings that result from the chemical interactions between fresh and salt waters, and the effects of fluctuating sea level during the Quaternary. The case studies include a review of syngenetic karst in coastal dune limestones, Australia (S.White, 5.1.1) and an example of speleogenesis on tectonically active carbonate islands (Gunn and Lowe, 5.1.2). Klimchouk in Chapter 5.2 reviews conditions and mechanisms of speleogenesis in deep-seated and confined settings, one of the most controversial but exciting topics in modern cave research. Conventional karst/speleogenetic theories are concerned chiefly with shallow, unconfined geologic settings, supposing that the karstification found there is intimately related to surface conditions of input and output, with the dissolution being driven by downward meteoric water recharge. The possibility of hypogenic karstification in deeper environments has been neglected for a long time, and the quite numerous instances of karst features found at significant depths have usually been interpreted as buried paleokarst. However, the last decade has seen a growing recognition of the variety and importance of hypogene dissolution processes and of speleogenesis under confined settings which often precedes unconfined development (Hill, 1987, 1995; Klimchouk, 1994, 1996, 1997; Lowe, 1992; Lowe & Gunn, 1995; Mazzullo & Harris, 1991, 1992; Palmer, 1991, 1995; Smart & Whitaker, 1991; Worthington, 1991, 1994; Worthington & Ford, 1995). Confined (artesian) settings were commonly ignored as sites for cave origin because the classic concept of artesian flow implies long lateral travel distances for groundwater within a soluble unit, resulting in a low capacity to generate caves in the confined area. However, the recognition of non-classical features in artesian flow, namely the occurrence of cross-formation hydraulic communication within artesian basins, the concepts of transverse speleogenesis and of the inversion of hydrogeologic function of beds in a sequence, allows for a revision of the theory of artesian speleogenesis and of views on the origin of many caves. It is proposed that artesian speleogenesis is immensely important to speleo-inception and also accounts for the development of some of the largest known caves in the world. Typical conditions of recharge, the flow pattern through the soluble rocks, and groundwater aggressiveness favor uniform, rather than competing, development of conduits, resulting in maze caves where the structural prerequisites exist. Cross-formational flow favors a variety of dissolution mechanisms that commonly involve mixing. Hydrogeochemical mechanisms of speleogenesis are particularly diverse and potent where carbonate and sulfate beds alternate and within or adjacent to hydrocarbon-bearing sedimentary basins. Hypogene speleogenesis occurs in rocks of varied lithology and can involve a variety of dissolution mechanisms that operate under different physical constraints but create similar cave features. Case studies include the great gypsum mazes of the Western Ukraine (Klimchouk, Section 5.2.1), great maze caves in limestones in Black Hills, South Dakota (Palmer, Section 5.2.2) and Siberia (Filippov, Section 5.2.3), karstification in the Redwall aquifer, Arizona (Huntoon, Section 5.2.4), hydrothermal caves in Hungary (Y.Dublyansky, Section 5.2.6), and sulfuric acid speleogenesis (Lowe, Bottrell and Gunn, Section 5.2.7, and Hill, Section 5.2.8). Y.Dublyansky summarizes the peculiar features of hydrothermal speleogenesis (Section 5.2.5), and V.Dublyansky describes an outstanding example of a hydrothermal cavity, in fact the largest ever recorded by volume, in the Rhodope Mountains (Section 5.2.9). Recognition of the scale and importance of deep-seated speleogenesis and of the hydraulic continuity and cross-formational communications between aquifers in artesian basins is indispensable for the correct interpretation of evolution of karst aquifers, speleogenetic processes and associated phenomena, regional karst water-resource evaluations, and the genesis of certain karst-related mineral deposits. These and other theoretical and practical implications still have to be developed and evaluated, which offers a wide field for further research efforts. Ford in Chapter 5.3 reviews theory of speleogenesis that occurs where normal meteoric waters sink underground through the epikarst or dolines and stream sinks, etc. and circulate in the limestone or other soluble rocks without any major artesian confinement. These are termed common caves (Ford & Williams, 1989) because they probably account for 90% or more of the explored and mapped dissolutional caves that are longer than a few hundred meters. This estimate reflects the bias in exploration; caves formed in unconfined settings and genetically related to surface recharge are the most readily accessible and hence form the bulk of documented caves. Common caves display chiefly the branchwork forms where the dissolutional conduits occupy only a tiny proportion of the total length or area of penetrable fissures that is available to the groundwaters. The rules that govern the selection of the successful linkages that will be enlarged into the branchwork pattern are supported in the models presented in Chapter 4.2. In the long section caves may be divided into deep phreatic, multi-loop, mixed loop and water table, and ideal water table types, with drawdown vadose caves or invasion vadose caves above them. Many large systems display a mixture of the types. The concepts of plan pattern construction, phreatic, water table or vadose state, and multi-phase development of common caves are illustrated in the case studies that follow the introduction. They are organized broadly to begin with examples of comparatively simple deep phreatic and multi-loop systems (El Abra, Mexico, Ford, Section 5.3.1 and Castleguard Cave, Canada, Ford, Lauritzen and Worthington, Section 5.3.2), proceeding to large and complex multi-phase systems such as the North of Thun System, Switzerland (Jeannin, Bitterly and Hauselmann, Section 5.3.3) and Mammoth Cave, Kentucky (Palmer, Section 5.3.8), to representatives of mixed vadose and phreatic development in mountainous regions (the Alps, Audra, Section 5.3.4; the Pyrenees, Fernandez, Calaforra and Rossi, Section 5.3.5; Mexico, Hose, Section 5.3.6) and where there is strong lithologic or structural control (Folded Appalachians, W.White, Section 5.3.7; gypsum caves in the South of Spain, Calaforra and Pulido-Bosch, Section 5.3.10). Two special topics are considered by W.White in Section 5.3.9 (Speleogenesis of vertical shafts in the eastern US) and Palmer (Maze origin by diffuse recharge through overlying formation). The set concludes with two instances of nearly ideal water table cave development (in Belize and Hungary, Ford, Section 5.3.12), and a review of the latest models of speleogenesis from the region where modern karst studies in the West began, the Classical Karst of Slovenia and Trieste (?u?ter?ic, Section 5.3.13). In Parts 2-5 attention is directed primarily on how the gross geometry of a cave system is established. Part 6 switches focus to the forms at meso- and micro- scales, which can be created during enlargement of the cave. Lauritzen and Lundberg in Chapter 6.1 summarize the great variety of erosional forms ( speleogenetic facies ) that can be created by a wide range of speleogenetic agents operating in the phreatic or vadose zones. Some forms of cave passages have been subject to intensive research and may be interpreted by means of simple physical and chemical principles, but many others are polygenetic and hence difficult to decipher with certainty. However, in addition to the analysis of cave patterns (see Chapter 3.4), each morphological element is a potential tool that can aid our inferences on the origin of caves and on major characteristics of respective past hydrogeological settings. In Chapter 6.2 E.White and W.White review breakdown morphology in caves, generalizing that the processes are most active during the enlargement and decay phases of cave development. Early in the process breakdown occurs when the flow regime shifts from pipe-full conditions to open channel conditions (i.e. when the roof first loses buoyant support) and later in the process breakdown becomes part of the overall degradation of the karst system. The chapter addresses the mechanism of breakdown formation, the geological triggers that initiate breakdown, and the role that breakdown plays in the development of caves. As the great majority of both theoretical considerations and case studies in this book deal with speleogenesis in carbonate rocks, it is useful to provide a special forum to examine dissolution cave genesis in other rocks. This is the goal of Part 7. Klimchouk (7.1) provides a review of speleogenesis in gypsum. This appears to be a useful playground for testing the validity and limitations of certain general speleogenetic concepts. Differences in solution kinetics between gypsum and calcite impose some limitations and peculiar features on the early evolution of conduits in gypsum. These peculiarities appear to be an extreme and more obvious illustration of some rules of speleogenetic development devised from conceptual and digital modeling of early conduit growth in limestones. For instance, it is shown (e.g. Palmer, 1984, 1991; Dreybrodt, 1996; see also Chapter 3.4 and Section 4.2.2) that initiation of early, narrow and long pathways does not seem feasible under linear dissolution rate laws (n=1) due to exponential decrease of the dissolution rates. Although the dissolution kinetics of gypsum are not well known close to equilibrium it is generally assumed that they are controlled entirely by diffusion and therefore linear. If dissolution of gypsum is solely diffusion-controlled, with no change in the kinetic order, conduit initiation could not occur in phreatic settings or by lateral flow through gypsum from distant recharge areas in artesian settings. Hence, the fact that maze caves are common in gypsum in artesian conditions (see Section 5.2.1) gives strong support to a general model of "transverse" artesian speleogenesis where gypsum beds are underlain by, or sandwiched between, insoluble or low-solubility aquifers (Chapter 5.2), and suggests that it may be applicable to cave development in carbonates. In unconfined settings, speleogenesis in gypsum occurs along fissures wide enough to support undersaturated flow throughout their length. Linear or crudely branching caves overwhelmingly predominate, which rapidly adjust to the contemporary geomorphic setting and to the maximum available recharge. Also, if considerable conduit porosity has been created in deep-seated settings, it provides ready paths for more intense groundwater circulation and further cave development when uplift brings the gypsum into the shallow subsurface. Speleogenesis in salt, reviewed in general and exemplified by the Monte Sedom case in Israel (Frumkin, Chapter 7.2), has been documented only in open, unconfined settings, where it provides a model for simple vadose cave development. Chapter 7.3 deals with speleogenesis in quartzites, illustrated by case studies from southeastern Minas Gerais, Brasil (Correa Neto, 7.3.1) and South Africa (Martini, 7.3.2). The process involves initial chemical weathering of the quartzite to create zones of friable rocks (sanding, or arenisation) which then are removed by piping, with further conduit enlargement due to mechanical erosion by flowing water. Part 8 combines the theoretical with some applied aspects of speleogenetic studies. Worthington, Ford and Beddows (8.1) show the important implications of what might be termed "speleogenetic wisdom" when studying ground water behaviour in karst. They examine some standard hydrogeological concepts in the light of knowledge of caves and their patterns, considering a range of case studies to identify the characteristic enhancement of porosity and permeability due to speleogenesis that occurs in carbonate rocks. The chapter focuses on unconfined carbonate aquifers as these are the most studied from the speleological perspective and most important for water supplies. Four aquifers, differing in rock type, recharge type (allogenic and autogenic), and age (Paleozoic, Mesozoic and Cenozoic), are described in detail to demonstrate the extent of dissolutional enhancement of porosity and permeability. It is shown that all four cases are similar in hydraulic function, despite the fact that some of them were previously characterized as different end members of a "karst ? non-karst" spectrum. Enhancement of porosity by dissolution is relatively minor: enhancement of permeability is considerable because dissolution has created dendritic networks of channels able to convey 94% or more of all flow in the aquifer, with fractures providing a small proportion and the matrix a negligible amount. These conclusions may be viewed as a warning to hydrogeologists working in carbonate terranes: probably the majority of unconfined aquifers function in a similar manner. Sampling is a major problem in their analysis because boreholes (the conventional exploration tool in hydrogeology) are unlikely to intersect the major channels that are conveying most of the flow and any contaminants in it. It is estimated, using examples of comprehensively mapped caves, that the probability of a borehole intersecting a conduit ranges from 1 in 50 to 1 in 1000 or more. Boreholes simply cannot be relied upon to detect the presence of caves or to ?characterise? the hydrologic functioning of cavernous aquifers. Wherever comprehensive evidence has been collected in unconfined carbonate aquifers (cave mapping plus boreholes plus lab analysis of core samples) it suggests that dissolution inexorably results in a similar structure, with channel networks providing most of the permeability of the aquifer, yet occupying a very minor fraction of its volume (Worthington, Ford and Beddows). Lowe (Chapter 8.2) focuses on developments in understanding the vital role played by karstic porosity, (broadly viewed as being the product of speleogenesis), in the migration of mineralizing fluids (or hydrocarbons) and in their deposition (or storage), and comments on the potential role of new speleogenetic concepts in developing greater understanding in the future. Although some early workers were clearly aware of actual evidence for some kind of relationship, and others noted its theoretical likelihood, it has been ignored by many until relatively recent times. This shortfall has gradually been redressed; new understanding of the extent and variety of karst processes is ensuring that new relationships are being recognized and new interpretations and models are being derived. The chapter does not pretend to give a comprehensive account of the topic but clearly demonstrates the wide applicability of speleogenetic knowledge to issues in economic geology. In Chapter 8.3 Aley provides an overview of the water and land-use problems that occur in areas with conduit aquifers. He stresses that sound land management must be premised on an understanding that karst is a three-dimensional landscape where the surface and subsurface are intimately and integrally connected. Failure to recognize that activity at the surface affects the subsurface, and the converse, has long been the root cause of many of the problems of water and land use in karst regions. Karst areas have unique natural resource problems, whose management can have major economic consequences. Although there is an extensive literature on the nature of particular problems, resource protection and hazard minimization strategies in karst, it rarely displays an advanced understanding of the processes of the conduit formation and their characteristics yet these will always be involved. This book does not pretend to be a definitive text on speleogenesis. However, it is hoped that readers will find it to be a valuable reference source, that it will stimulate new ideas and approaches to develop and resolve some of the remaining problems, and that it will promote an appreciation of the importance of speleogenetic studies in karst hydrogeology and applied environmental sciences. Acknowledgements: We sincerely thank all contributors for their willing cooperation in the long and difficult process of preparing this book, for their participation in developing its logic and methodology and their cheerful response to numerous requests. We thank all colleagues who discussed the work with us and encouraged it in many ways, even though not contributing to its content as authors. We are particularly grateful to Margaret Palmer for invaluable help in editing the English in many contributions, to Nataly Yablokova for her help in performing many technical tasks and to Elizabeth White who prepared comprehensive index. Our thanks are due to Dr. David Drew, Dr. Philip LaMoreaux, Dr. George Moore and Prof. Marian Pulina for reviewing the manuscript and producing constructive notes and comments on improvement of the final product. The organizational costs and correspondence related to the preparation of the book were partially sponsored by the National Speleological Society, the publisher. We thank David McClurg, the Chair of the NSS Special Publication Committee, for his extensive technical and organizational support in the preparation and publishing processes.

Stable isotope variations in the Neoproterozoic Beck Spring Dolomite and Mesoproterozoic Mescal Limestone paleokarst: Implications for life on land in the Precambrian, 2001, Kenny Ray, Knauth L. Paul,
Proterozoic karst events lowered {delta}13C values by as much as 11{per thousand} for the 800 Ma Beck Spring Dolomite, California, and as much as 8.5{per thousand} for the 1.1 Ga Mescal Limestone, central Arizona, relative to the originally deposited carbonate. The 13C changes are attributed to input of 13C-depleted organic CO2 derived from photosynthetic organisms that colonized the ancient land surface. The large isotopic shift and its presence at two separate localities suggest that Proterozoic karst surfaces were colonized by significant photosynthetic communities with phytomasses possibly approaching those of today

Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary), 2001, Nemeth K. , Martin U. , Harangi S. ,
A late Miocene (7.56 Ma) maar volcanic complex (Tihany Maar Volcanic Complex - TMVC) is preserved in the Pannonian Basin and is part of the Bakony-Balaton Highland Volcanic Field. Base surge and fallout deposits were formed around maars by phreatomagmatic explosions, caused by interactions between water-saturated sediments and alkali basalt magma carrying peridotite Iherzolite xenoliths as well as pyroxene and olivine megacrysts. Subsequently, nested maars functioned as a sediment trap where deposition built up Gilbert-type delta sequences. At the onset of eruption, magma began to interact with a moderate amount of groundwater in the water-saturated sand. As eruption continued phreatomagmatic blasts excavated downward into limestones, providing access to abundant karst water and deeper to sandstones and schist both providing large amount of fracture-filling water, At the surface, this 'wet' eruption led to the emplacement of massive tuff breccias by fall, surge, mudflow and gravity flow deposition. The nature of the TMVC maar eruptions and their deposits appears to depend on the hydrological condition of the karst and/or fracture-filling aquifer, which varies seasonally with rainfall and spring runoff. The West and East Maar volcanoes of TMVC are interpreted to represent low water input from the karst and/or fracture-filling aquifer ('summer vent'), whereas the East Maar is interpreted to have formed when abundant karst and/or fracture-filling water was available ('spring vent'). (C) 2001 Elsevier Science B.V. All rights reserved

McCauley sinks: a compound breccia pipe in evaporite karst, Holbrook Basin, Arizona, U.S.A., 2001, Neal J. T. , Johnson K. S.
The McCauley Sinks, in the Holbrook basin of northeastern Arizona, are comprised of some 50 individual sinkholes within a 3-km-wide depression. The sinks are grouped in a semi-concentric pattern of three nested rings. The outer ring is an apparent tension zone containing ring fractures. The two inner rings are semicircular chains of large sinkholes, ranging up to 100 m across and 50 m deep. Several sub-basins within the larger depression show local down warping and possible incipient sinkholes. Permian Kaibab Formation limestone is the principal surface lithology; the limestone here is less than 15 m thick and is near its easternmost limit. Although surface rillenkarren are present, and the sinks are seen in the Kaibab limestone outcrops, the Kaibab is mainly a passive rock unit that has collapsed into solution cavities developed in underlying salt beds. Beneath the Kaibab is Coconino Sandstone, which overlies the Permian Schnebly Hill Formation, the unit containing the evaporite rocks principally halite in the Corduroy Member. Evaporite karst in this part of the Holbrook basin is quite different from the eastern part, probably because of the westward disappearance of the Holbrook anticline, a structure that has major joint systems that help channel water down to the salt beds farther to the east. Also, the McCauley Sinks are near the western limits of the evaporites. The structure at McCauley Sinks suggests a compound breccia pipe, with multiple sinks contributing to the inward-dipping major depression. The Richards Lake depression, 5 km southeast of McCauley Sinks, is similar in form and size but contains only a single, central sinkhole. An apparent difference in hydrogeology at McCauley Sinks is their proximity to the adjacent, deeply incised, Chevelon Canyon drainage, but the hydrologic connections are unknown.

Results 16 to 30 of 42
You probably didn't submit anything to search for