Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That analysis, core is petrophysical analysis of a rock core acquired through the process of boring a hole in rock with the intention of producing a core of rock as opposed to chips [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for belize (Keyword) returned 42 results for the whole karstbase:
Showing 16 to 30 of 42
Biology of the Chiquibul Cave System, Belize and Guatemala, 1996, Reddell, J. R. , Veni, G.

Karstification on the Northern Vaca Plateau, Belize, 1996, Reeder, P. , Brinkmann, R. , Alt, E.
(ELF) radio emissions were observed inside bat caves. Ground return currents from 60 Hz AC

Speleology in Belize: An Introduction, 1996, Veni, G.

An Introduction to Cave Exploration in Belize, 1996, Williams, N.
During a five week period, 19 caves were explored by a team of four cavers comprising the 1994 Mendip Caving Group (MCG) expedition to Belize. Six sizable caves were identified in the Cretaceous limestone, west of the Maya Mountains, and surveyed a total length of 2.5 km. Time spent in the field is broken down so as to show both the advantages and disadvantages of a small-scale expedition. Suggestions are made as to how future groups could benefit from the experiences of the expedition with regard to conducting significant research with a small team. The MCG expedition is compared to other larger expeditions, with the results showing that lightweight expeditions are more easily financed and organized than larger expeditions; however, they may not be suitable if detailed scientific studies are intended.

Bibliography of Belizean Caving, 1996, Williams, Nick
Approximately 300 caves have been documented in Belize in the past 100 years. These include 198 registered archaeological sites. Ethnohistoric, ethnographic, iconographic, and archaeological sources indicate the importance of caves in Maya culture over a period spanning at least 1,500 years. The few analyses of ceramics from Belize caves indicate use predominantly during the Late/Terminal Classic and Early Postclassic (A.D. 600-1100). A wide array of archaeological evidence such as ceremonial dumps, burials, art, and artificial construction support the idea that caves were used primarily for ceremonial activities. Looting is a major problem, and lack of funding seriously compromises not only the protection of cave sites, but also the preservation of materials and publication of the information recovered by archaeological research.

Comment of Extremely Low Frequency Emissions in Bat Caves, 1996, Withrow, S.
Systematic speleological exploration has been taking place in Belize since about 1960. Such exploration tends to be characterized by long term involvement by a small number of individuals, principally from the USA, but with significant contributions from other countries, especially the UK. An estimated total of 250 km of passage have now been mapped, ranging from low dry grovels to large, active river passage, and two of the largest underground chambers in the world. The author assigns caves to eight geographical areas and describes the history of recent exploration in each. Future exploration problems and priorities are also discussed.

Holocene stratigraphy of Cobweb Swamp, a Maya wetland in northern Belize, 1996, Jacob J. S. , Hallmark C. T. ,
We investigated the soils and sediments of Cobweb Swamp, adjacent to the archaeological site of Colha in northern Belize, to adumbrate landscape evolution and the impact of the ancient Maya on a tropical palustrine wetland. The Cobweb section exposes a complex and dynamically evolving landscape, with a rich interplay between natural and human forces. The Cobweb depression probably formed as a karstic doline or polje in interbedded limestone and marl of late Tertiary or Pleistocene age. During the latest Pleistocene, a terrestrial marsh covered most of the depression. Slope wash and colluviation from adjacent slopes impacted the depression during the early Holocene, possibly in response to a drier and cooler climate reported to have occurred in the region during this time. After ca. 5600 B.P., the Cobweb depression was affected by relatively rapidly rising sea levels in the area, and a brackish lagoon filled the basin. By 4800 B.P., a peat filled in the lagoon, probably because precipitation of a marl in the lagoon coupled with decreasing rates of sea-level rise enabled emergent vegetation to encroach the shallowing waters. Humans first began to affect the landscape when this peat was at the surface. Massive deforestation, resulting in increased runoff and rising water levels, is the most likely explanation for a fresh-water lagoon that again inundated the Cobweb depression between 3400 and 500 B.P. The Maya Clay was deposited on the edge of this lagoon as the result of upland erosion, almost as soon as deforestation began, but the bulk of the deposit was coincident with the sudden collapse of the Classic Maya civilization ca. 1000 B.P., suggesting that significant environmental degradation was associated with the demise of the Classic Maya. Peat began to fill the Cobweb lagoon sometime before 500 B.P., probably the result of shallower water levels from decreasing runoff resulting from reforestation after abandonment by the Maya. ------------------------------------------------------

Regional Variation in Maya Cave Art, 1997, Stone, A.
The Maya area is well endowed with cave art, one of the rarest art forms known in the world. Over 25 caves with paintings and handprints have been documented in a recent survey by the author, and an undetermined additional number contain carvings. In this paper, I outline regional differences in the corpus. For example, cave painting in the Puuc area of western Yucatan has a relatively coherent style and subject matter, distinct from contemporary cave painting in the Southern Maya Lowlands. Cave painting in southern Belize is stylisticaly heterogeneous. I consider the issue of stylistic variation in Maya cave art from a functional and chronological perspective

Holocene development of three isolated carbonate platforms, Belize, central America, 1998, Gischler E. , Hudson J. H. ,
Locally operating factors such as topography of the reef basement and exposure to waves and currents rather than regionally effective factors such as the post-glacial sea level rise in the western Atlantic explain the different Holocene developments of the three isolated carbonate platforms Glovers Reef, Lighthouse Reef, and Turneffe Islands offshore Belize. A series of NNE-striking tilted fault-blocks at the passive continental margin forms the deep basement of the Belize reefs. Glovers and Lighthouse Reefs are located on the same fault-block, while Turneffe Islands is situated west of Lighthouse Reef on an adjacent fault-block. The three platforms are surrounded by deep water and have surface-breaking reef rims. Significant differences exist between platform interiors. Glovers Reef has only 0.2% of land and an 18 m deep, well-circulated lagoon with over 800 patch reefs. Lighthouse Reef has 3% of land and a well-circulated lagoon area. Patch reefs are aligned along a NNE-striking trend that separates a shallow western (3 m) and a deeper eastern (8 m) lagoon. Turneffe Islands has 22% of land that is mainly red mangrove. Interior lagoons are up to 8 m deep and most have restricted circulation and no patch reefs. Surface sediments are rich in organic matter. In contrast, the northernmost part of Turneffe Islands has no extensive mangrove development and the well-circulated lagoon area has abundant patch reefs. Holocene reef development was investigated by means of 9 rotary core holes that all reached Pleistocene reef limestones, and by radiometric dating of corals. Maximal Holocene reef thickness reaches 11.7 m on Glovers Reef, 7.9 m on Lighthouse Reef, and 3.8 m on Turneffe Islands. Factors that controlled Holocene reef development include the following. (1) Holocene sea level. The margin of Glovers Reef was flooded by the rising Holocene sea ca. 7500 YBP, that of Lighthouse Reef ca. 6500 YBP, and that of Turneffe Islands between 5400 and 4750 YBP. All investigated Holocene reefs belong to the keep-up type, even though the three platforms were flooded successively and, hence, the reefs had to keep pace with different rates of sea level rise. (2) Pre-Holocene topography. Pleistocene elevation and relief are different on the three platforms. This is the consequence of both tectonics and karst. Different elevations caused successive reef initiation and they also resulted in differences in lagoon depths. Variations in Pleistocene topography also explain the different facies distribution patterns on the windward platforms that are located on the same fault-block. On Lighthouse Reef tectonic structures are clearly visible such as the linear patch reef trend that is aligned along a Pleistocene fault. On Glovers Reef only short linear trends of patch reefs can be detected because the Pleistocene tectonic structures are presumably masked by the higher Holocene thickness. The lower Pleistocene elevation on Glovers Reef is probably a consequence of both a southward tectonic tilt, and stronger karstification towards the south related to higher rainfall. (3) Exposure to waves and currents. Glovers Reef, Lighthouse Reef, and the northernmost part of Turneffe Islands receive the maximum wave force as they are open to the Caribbean Sea. Adjacent lagoons are well-circulated and have luxuriant patch reef growth and no extensive mangrove development. By contrast, most of Turneffe Islands is protected from the open Caribbean Sea by Lighthouse Reef to the east and is only exposed to reduced wave forces, allowing extensive mangrove growth in these protected areas. (C) 1998 Elsevier Science B.V

Forum: Furuncular Myiasis caused by Dermatobia Hominis in a caver returned from Belize, 2000, Bregani E. R. , Ceraldi T. , Tognini P.

The Ritual Use of a Cave on the Northern Vaca Plateau, Belize, Central America, 2000, Colas, P. R. , Reeder, Ph. , Webster, J.
Research conducted on the Northern Vaca Plateau in west-central Belize has discovered numerous caves that were utilized by the Maya. In particular, Chen Pix appears to have been used for religious activities, including autosacrificial bloodletting. A constructed platform in the cave was excavated in 1998, and a nearly complete tripod plate (the Chen Pix Tripod) was recovered. This plate depicts a seated single figure that appears to be catching blood dripping from his right hand, in a vessel held in the left hand, and on a loincloth spread in front of the figure. We think that the Chen Pix Tripod was probably used for collecting blood scattered during ritual events conducted on the platform, and we offer the following interpretation. A platform was constructed within Chen Pix (with a speleothem-bordered path leading from the entrance drop to this platform) that was used for ritual activities. One ritual activity involved bloodletting, and a plate depicting autosacrificial bloodletting (the Chen Pix Tripod) was used during this ceremony. The Tripod plate not only depicts the scene, but we also think it was used for collecting blood during the ritual. Upon completion of the ritual, the plate was broken on the platform as an offering. These events might have taken place in Chen Pix sometime during the Late Classic period.

Last interglacial reef growth beneath Belize barrier and isolated platform reefs, 2000, Gischler Eberhard, Lomando Anthony J. , Hudson J. Harold, Holmes Charles W. ,
We report the first radiometric dates (thermal-ionization mass spectrometry) from late Pleistocene reef deposits from offshore Belize, the location of the largest modern reef complex in the Atlantic Ocean. The results presented here can be used to explain significant differences in bathymetry, sedimentary facies, and reef development of this major reef area, and the results are significant because they contribute to the knowledge of the regional geology of the eastern Yucatan. The previously held concept of a neotectonically stable eastern Yucatan is challenged. The dates indicate that Pleistocene reefs and shallow-water limestones, which form the basement of modern reefs in the area, accumulated ca. 125-130 ka. Significant differences in elevation of the samples relative to present sea level (>10 m) have several possible causes. Differential subsidence along a series of continental margin fault blocks in combination with variation in karstification are probably the prime causes. Differential subsidence is presumably related to initial extension and later left-lateral movements along the adjacent active boundary between the North American and Caribbean plates. Increasing dissolution toward the south during Pleistocene sea-level lowstands is probably a consequence of higher precipitation rates in mountainous southern Belize

Dolomitization of Holocene Shallow-Marine Deposits Mediated by Sulfate Reduction and Methanogenesis in Normal-Salinity Seawater, Northern Belize, 2000, Teal Chellie S. , Mazzullo S. J. , Bischoff William D. ,
Dolomite constitutes an average of 12% of the Holocene organic-rich sediments over a 15 km2 area of the Cangrejo Shoals mudbank in northern Belize. Although it defines a laterally persistent stratiform body that averages 3 m thick, it is present throughout the 7.6-m-thick sediment section. These transgressive sediments are less than [~]6400 years old and were deposited in shallow-marine environments of normal salinity. The dolomite is dominantly cement, and average crystal size is 7 m. There are no significant correlations among amount of dolomite vs. sediment texture, mineralogy, porosity, or mole % MgCO3 in associated particulate high-Mg calcite, depth, or location on the shoals. The dolomites are poorly ordered and calcic (39.5-44.5 mole % MgCO3), with low mean Mn (210 ppm) and relatively high mean Sr (1034 ppm) concentrations. There is no evidence of recrystallization or geochemical alteration of the dolomite. {delta}18O values of the dolomites range from 0.5 to 2.8{per thousand}PDB, and the mean value (2.1{per thousand}) suggests that the dolomite precipitated from normal-salinity pore water. Dolomite {delta}13C values range from -5.2{per thousand} to .6{per thousand}PDB (mean seawater {delta}13C = 0.5{per thousand}), which suggests dolomitization promoted by both bacterial sulfate reduction and methanogenesis in environments with anoxic pore water. Dolomitization attending these organodiagenetic reactions apparently was reversible over time, and episodic rather than continual precipitation is indicated. Requisite Mg and Ca were provided by seawater and by some dissolution of host sediments. The most rapid period of dolomitization may have been during early transgression, when relatively high sedimentation rates sustained high levels of organodiagenesis and pore-water alkalinities

Speleogenesis: Evolution of Karst Aquifers., 2000,
The aim of this book is to present advances made in recent decades in our understanding of the formation of dissolutional caves, and to illustrate the role of cave genetic ( speleogenetic ) processes in the development of karst aquifers. From the perspective of hydrogeology, karst ground water flow is a distinct kind of fluid circulation system, one that is capable of self-organization and self-development due to its capacity to dissolve significant amounts of the host rock and transport them out of the system. Fluid circulation in soluble rocks becomes more efficiently organized by creating, enlarging and modifying patterns of cave conduits, the process of speleogenesis. We can assert that karst ground water flow is a function of speleogenesis and vice versa . The advances in cave science are poorly appreciated in what may be termed ?mainstream hydrogeology?, which retains a child-like faith in flow models developed in the sand box. Many karst students also will not be aware of all emerging concepts of cave origin because discussions of them are scattered through journals and books in different disciplines and languages, including publications with small circulation. An understanding of principles of speleogenesis and its most important controls is indispensable for proper comprehension of the evolution of the karst system in general and of karst aquifers in particular. We hope this book will be useful for both karst and cave scientists, and for general hydrogeologists dealing with karst terranes. This book is a pioneer attempt by an international group of cave scientists to summarize modern knowledge about cave origin in various settings, and to examine the variety of approaches that have been adopted. Selected contributions from 44 authors in 15 nations are combined in an integrated volume, prepared between 1994 and 1998 as an initiative of the Commission of Karst Hydrogeology and Speleogenesis, International Speleological Union. Despite a desire to produce an integrated book, rather than a mere collection of papers, the editors' policy has not been directed toward unifying all views. Along with some well-established theories and approaches, the book contains new concepts and ideas emerging in recent years. We hope that this approach will stimulate further development and exchange of ideas in cave studies and karst hydrogeology. Following this Introduction, (Part 1), the book is organized in seven different parts, each with sub-chapters. Part 2 gives a history of speleogenetic studies, tracing the development of the most important ideas from previous centuries (Shaw, Chapter 2.1) through the early modern period in the first half of this century (Lowe, Chapter 2.2) to the threshold of modern times (W.White, Chapter 2.3). The present state of the art is best illustrated by the entire content of this book. Part 3 overviews the principal geologic and hydrogeologic variables that either control or significantly influence the differing styles of cave development that are found. In Chapter 3.1 Klimchouk and Ford introduce an evolutionary approach to the typology of karst settings, which is a taken as a base line for the book. Extrinsic factors and intrinsic mechanisms of cave development change regularly and substantially during the general cycle of geological evolution of a soluble rock and , more specifically, within the hydrogeologic cycle. The evolutionary typology of karst presented in this chapter considers the entire life cycle of a soluble formation, from deposition (syngenetic karst) through deep burial, to exposure and denudation. It helps to differentiate between karst types which may concurrently represent different stages of karst development, and is also a means of adequately classifying speleogenetic settings. The different types of karst are marked by characteristic associations of the structural prerequisites for groundwater flow and speleogenesis, flow regime, recharge mode and recharge/discharge configurations, groundwater chemistry and degree of inheritance from earlier conditions. Consequently, these associations make a convenient basis to view both the factors that control cave genesis and the particular types of caves. Lithological and structural controls of speleogenesis are reviewed in general terms in Chapters 3.2 (Klimchouk and Ford). Lowe in Chapter 3.3 discusses the role of stratigraphic elements and the speleo-inception concept. Palmer in Chapter 3.4 overviews the hydrogeologic controls of cave patterns and demonstrates that hydrogeologic factors, the recharge mode and type of flow in particular, impose the most powerful controls on the formation of the gross geometry of cave systems. Hence, analysis of cave patterns is especially useful in the reconstruction of environments from paleokarst and in the prediction and interpretation of groundwater flow patterns and contaminant migration. Any opportunity to relate cave patterns to the nature of their host aquifers will assist in these applied studies as well. Osborne (Chapter 3.7) examines the significance of paleokarst in speleogenesis. More specific issues are treated by Klimchouk (The nature of epikarst and its role in vadose speleogenesis, Chapter 3.5) and by V.Dublyansky and Y.Dublyansky (The role of condensation processes, Chapter 3.6). Part 4 outlines the fundamental physics and chemistry of the speleogenetic processes (Chapter 4.1) and presents a variety of different approaches to modeling cave conduit development (Chapter 4.2). In Chapter 4.1, the chemical reactions during the dissolution of the common soluble minerals, calcite, gypsum, salt and quartz, are discussed with the basic physical and chemical mechanisms that determine their dissolution rates. As limestone is the most common karst rock and its dissolution is the most complex in many respects, it receives the greatest attention. Dreybrodt (Section 4.1.1) and Dreybrodt and Eisenlohr (Section 4.1.2) provide advanced discussion and report the most recent experimental data, which are used to obtain realistic dissolution rates for a variety of hydrogeologic conditions and as input for modeling the evolution of conduits. Although direct comparisons between theoretical or analytical dissolution rates and those derived from field measurements is difficult, a very useful comparison is provided by W.White (Section 4.1.3). The bulk removal of carbonate rock from karst drainage basins can be evaluated either by direct measurement of rock surface retreat or by mass balance within known drainage basins. All of these approaches make sense and give roughly accurate results that are consistent with theoretical expectations. It is well recognized today that the earliest, incipient, phases of speleogenesis are crucial in building up the pattern of conduits that evolve into explorable cave systems. It is difficult to establish the major controls on these initial stages by purely analytical or intuitive methods, so that modeling becomes particularly important. Various approaches are presented in Chapter 4.2. Ford, Ewers and Lauritzen present the results of systematic study of the propagation of conduits between input and output points in an anisotropic fissure, using a variety of hardware and software models, in series representing the "single input", "multiple inputs in one rank", and "multiple inputs in multiple ranks" cases (Section 4.2.1). The results indicate important details of the competitive development of proto-conduits and help to explain branching cave patterns. In the competition between inputs, some principal tubes in near ranks first link ("breakthrough") to an output boundary. This re-orients the flowfields of failed nearby competitors, which then extend to join the principal via their closest secondaries. The process extends outwards and to the rear, linking up all inputs in a "cascading system". The exploding growth of computer capability during the last two decades has greatly enhanced possibilities for digital modeling of early conduit development. Investigating the growth of a single conduit is a logical first step in understanding the evolution of caves, realized here by Dreybrodt and Gabrov?ek in the form of a simple mathematical model (Section 4.2.2) and by Palmer by numerical finite-difference modeling (Section 4.2.3). The models show that positive feedback loops operate; widening a fracture causes increasing flow through it, therefore dissolution rates increase along it and so on, until finally a dramatic increase of flow rates permits a dramatic enhancement of the widening. This breakthrough event terminates the initial stage of conduit evolution. From then on the water is able to pass through the entire conduit while maintaining sufficient undersaturation to preserve low-order kinetics, so the growth rate is very rapid, at least from a geological standpoint -- usually about 0.001-0.1 cm/yr. The initiation ("breakthrough") time depends critically on the length and the initial width of the fracture and, for the majority of realistic cases, it covers a time range from a few thousand years to ten million years in limestones. The modeling results give a clear explanation of the operation of selectivity in cave genesis. In a typical unconfined karst aquifer there is a great range of enlargement rates along the competing flow routes, and only a few conduits will grow to enterable size. The modeling also provides one starting point (others are discussed in Chapter 5.2) to explain uniform maze patterns, which will be favored by enlargement of all openings at comparable rates where the discharge/length ratio is great enough. Single-conduit modeling has the virtue of revealing how the cave-forming variables relate to each other in the simplest possible way. Although it is more difficult to extend this approach to two dimensions, many have done so (e.g. Groves & Howard, 1994; Howard & Groves, 1995; in this volume ? Ford, Ewers and Lauritzen, Section 4.2.1; Dreybrodt and Siemers, Section 4.2.4, and Sauter and Liedl, Section 4.2.5). The modeling performed by Dreybrodt and Siemers shows that the main principles of breakthrough derived from one-dimensional models remain valid. The evolution of karst aquifers has been modeled for a variety of different geological settings, including also variation in lithology with respect to the dissolution kinetics. Sauter and Liedl simulate the development of conduits at a catchment scale for fissured carbonate rocks with rather large initial openings (about 1 mm). The approach is based upon hydraulic coupling of a pipe network to matrix continuum in order to represent the well-known duality of karst aquifer flow systems. It is also shown how understanding of the genesis of karst aquifers and modeling of their development can assist in characterization of the conduit system, which dominates flow and transport in karst aquifers. An important point that has emerged from cave studies of the last three decades is that no single speleogenetic model applies to all geologic and hydrologic settings. Given that settings may also change systematically during the evolutionary geological cycles outlined above (Chapter 3.1), an evolutionary approach is called for. This is attempted in Part 5, which is organized to give extended accounts of speleogenesis in the three most important settings that we recognize: coastal and oceanic (Chapter 5.1), deep-seated and confined (Chapter 5.2) and unconfined (Chapter 5.3). Each Chapter begins with a review of modern ideas on cave development in the setting, followed by representative case studies. The latter include new accounts of some "classic" caves as well as descriptions of other, little-known cave systems and areas. Readers may determine for themselves how well the real field examples fit the general models presented in the introductory sections. Mylroie and Carew in Chapter 5.1 summarize specific features of cave and karst development in young rocks in coastal and island settings that result from the chemical interactions between fresh and salt waters, and the effects of fluctuating sea level during the Quaternary. The case studies include a review of syngenetic karst in coastal dune limestones, Australia (S.White, 5.1.1) and an example of speleogenesis on tectonically active carbonate islands (Gunn and Lowe, 5.1.2). Klimchouk in Chapter 5.2 reviews conditions and mechanisms of speleogenesis in deep-seated and confined settings, one of the most controversial but exciting topics in modern cave research. Conventional karst/speleogenetic theories are concerned chiefly with shallow, unconfined geologic settings, supposing that the karstification found there is intimately related to surface conditions of input and output, with the dissolution being driven by downward meteoric water recharge. The possibility of hypogenic karstification in deeper environments has been neglected for a long time, and the quite numerous instances of karst features found at significant depths have usually been interpreted as buried paleokarst. However, the last decade has seen a growing recognition of the variety and importance of hypogene dissolution processes and of speleogenesis under confined settings which often precedes unconfined development (Hill, 1987, 1995; Klimchouk, 1994, 1996, 1997; Lowe, 1992; Lowe & Gunn, 1995; Mazzullo & Harris, 1991, 1992; Palmer, 1991, 1995; Smart & Whitaker, 1991; Worthington, 1991, 1994; Worthington & Ford, 1995). Confined (artesian) settings were commonly ignored as sites for cave origin because the classic concept of artesian flow implies long lateral travel distances for groundwater within a soluble unit, resulting in a low capacity to generate caves in the confined area. However, the recognition of non-classical features in artesian flow, namely the occurrence of cross-formation hydraulic communication within artesian basins, the concepts of transverse speleogenesis and of the inversion of hydrogeologic function of beds in a sequence, allows for a revision of the theory of artesian speleogenesis and of views on the origin of many caves. It is proposed that artesian speleogenesis is immensely important to speleo-inception and also accounts for the development of some of the largest known caves in the world. Typical conditions of recharge, the flow pattern through the soluble rocks, and groundwater aggressiveness favor uniform, rather than competing, development of conduits, resulting in maze caves where the structural prerequisites exist. Cross-formational flow favors a variety of dissolution mechanisms that commonly involve mixing. Hydrogeochemical mechanisms of speleogenesis are particularly diverse and potent where carbonate and sulfate beds alternate and within or adjacent to hydrocarbon-bearing sedimentary basins. Hypogene speleogenesis occurs in rocks of varied lithology and can involve a variety of dissolution mechanisms that operate under different physical constraints but create similar cave features. Case studies include the great gypsum mazes of the Western Ukraine (Klimchouk, Section 5.2.1), great maze caves in limestones in Black Hills, South Dakota (Palmer, Section 5.2.2) and Siberia (Filippov, Section 5.2.3), karstification in the Redwall aquifer, Arizona (Huntoon, Section 5.2.4), hydrothermal caves in Hungary (Y.Dublyansky, Section 5.2.6), and sulfuric acid speleogenesis (Lowe, Bottrell and Gunn, Section 5.2.7, and Hill, Section 5.2.8). Y.Dublyansky summarizes the peculiar features of hydrothermal speleogenesis (Section 5.2.5), and V.Dublyansky describes an outstanding example of a hydrothermal cavity, in fact the largest ever recorded by volume, in the Rhodope Mountains (Section 5.2.9). Recognition of the scale and importance of deep-seated speleogenesis and of the hydraulic continuity and cross-formational communications between aquifers in artesian basins is indispensable for the correct interpretation of evolution of karst aquifers, speleogenetic processes and associated phenomena, regional karst water-resource evaluations, and the genesis of certain karst-related mineral deposits. These and other theoretical and practical implications still have to be developed and evaluated, which offers a wide field for further research efforts. Ford in Chapter 5.3 reviews theory of speleogenesis that occurs where normal meteoric waters sink underground through the epikarst or dolines and stream sinks, etc. and circulate in the limestone or other soluble rocks without any major artesian confinement. These are termed common caves (Ford & Williams, 1989) because they probably account for 90% or more of the explored and mapped dissolutional caves that are longer than a few hundred meters. This estimate reflects the bias in exploration; caves formed in unconfined settings and genetically related to surface recharge are the most readily accessible and hence form the bulk of documented caves. Common caves display chiefly the branchwork forms where the dissolutional conduits occupy only a tiny proportion of the total length or area of penetrable fissures that is available to the groundwaters. The rules that govern the selection of the successful linkages that will be enlarged into the branchwork pattern are supported in the models presented in Chapter 4.2. In the long section caves may be divided into deep phreatic, multi-loop, mixed loop and water table, and ideal water table types, with drawdown vadose caves or invasion vadose caves above them. Many large systems display a mixture of the types. The concepts of plan pattern construction, phreatic, water table or vadose state, and multi-phase development of common caves are illustrated in the case studies that follow the introduction. They are organized broadly to begin with examples of comparatively simple deep phreatic and multi-loop systems (El Abra, Mexico, Ford, Section 5.3.1 and Castleguard Cave, Canada, Ford, Lauritzen and Worthington, Section 5.3.2), proceeding to large and complex multi-phase systems such as the North of Thun System, Switzerland (Jeannin, Bitterly and Hauselmann, Section 5.3.3) and Mammoth Cave, Kentucky (Palmer, Section 5.3.8), to representatives of mixed vadose and phreatic development in mountainous regions (the Alps, Audra, Section 5.3.4; the Pyrenees, Fernandez, Calaforra and Rossi, Section 5.3.5; Mexico, Hose, Section 5.3.6) and where there is strong lithologic or structural control (Folded Appalachians, W.White, Section 5.3.7; gypsum caves in the South of Spain, Calaforra and Pulido-Bosch, Section 5.3.10). Two special topics are considered by W.White in Section 5.3.9 (Speleogenesis of vertical shafts in the eastern US) and Palmer (Maze origin by diffuse recharge through overlying formation). The set concludes with two instances of nearly ideal water table cave development (in Belize and Hungary, Ford, Section 5.3.12), and a review of the latest models of speleogenesis from the region where modern karst studies in the West began, the Classical Karst of Slovenia and Trieste (?u?ter?ic, Section 5.3.13). In Parts 2-5 attention is directed primarily on how the gross geometry of a cave system is established. Part 6 switches focus to the forms at meso- and micro- scales, which can be created during enlargement of the cave. Lauritzen and Lundberg in Chapter 6.1 summarize the great variety of erosional forms ( speleogenetic facies ) that can be created by a wide range of speleogenetic agents operating in the phreatic or vadose zones. Some forms of cave passages have been subject to intensive research and may be interpreted by means of simple physical and chemical principles, but many others are polygenetic and hence difficult to decipher with certainty. However, in addition to the analysis of cave patterns (see Chapter 3.4), each morphological element is a potential tool that can aid our inferences on the origin of caves and on major characteristics of respective past hydrogeological settings. In Chapter 6.2 E.White and W.White review breakdown morphology in caves, generalizing that the processes are most active during the enlargement and decay phases of cave development. Early in the process breakdown occurs when the flow regime shifts from pipe-full conditions to open channel conditions (i.e. when the roof first loses buoyant support) and later in the process breakdown becomes part of the overall degradation of the karst system. The chapter addresses the mechanism of breakdown formation, the geological triggers that initiate breakdown, and the role that breakdown plays in the development of caves. As the great majority of both theoretical considerations and case studies in this book deal with speleogenesis in carbonate rocks, it is useful to provide a special forum to examine dissolution cave genesis in other rocks. This is the goal of Part 7. Klimchouk (7.1) provides a review of speleogenesis in gypsum. This appears to be a useful playground for testing the validity and limitations of certain general speleogenetic concepts. Differences in solution kinetics between gypsum and calcite impose some limitations and peculiar features on the early evolution of conduits in gypsum. These peculiarities appear to be an extreme and more obvious illustration of some rules of speleogenetic development devised from conceptual and digital modeling of early conduit growth in limestones. For instance, it is shown (e.g. Palmer, 1984, 1991; Dreybrodt, 1996; see also Chapter 3.4 and Section 4.2.2) that initiation of early, narrow and long pathways does not seem feasible under linear dissolution rate laws (n=1) due to exponential decrease of the dissolution rates. Although the dissolution kinetics of gypsum are not well known close to equilibrium it is generally assumed that they are controlled entirely by diffusion and therefore linear. If dissolution of gypsum is solely diffusion-controlled, with no change in the kinetic order, conduit initiation could not occur in phreatic settings or by lateral flow through gypsum from distant recharge areas in artesian settings. Hence, the fact that maze caves are common in gypsum in artesian conditions (see Section 5.2.1) gives strong support to a general model of "transverse" artesian speleogenesis where gypsum beds are underlain by, or sandwiched between, insoluble or low-solubility aquifers (Chapter 5.2), and suggests that it may be applicable to cave development in carbonates. In unconfined settings, speleogenesis in gypsum occurs along fissures wide enough to support undersaturated flow throughout their length. Linear or crudely branching caves overwhelmingly predominate, which rapidly adjust to the contemporary geomorphic setting and to the maximum available recharge. Also, if considerable conduit porosity has been created in deep-seated settings, it provides ready paths for more intense groundwater circulation and further cave development when uplift brings the gypsum into the shallow subsurface. Speleogenesis in salt, reviewed in general and exemplified by the Monte Sedom case in Israel (Frumkin, Chapter 7.2), has been documented only in open, unconfined settings, where it provides a model for simple vadose cave development. Chapter 7.3 deals with speleogenesis in quartzites, illustrated by case studies from southeastern Minas Gerais, Brasil (Correa Neto, 7.3.1) and South Africa (Martini, 7.3.2). The process involves initial chemical weathering of the quartzite to create zones of friable rocks (sanding, or arenisation) which then are removed by piping, with further conduit enlargement due to mechanical erosion by flowing water. Part 8 combines the theoretical with some applied aspects of speleogenetic studies. Worthington, Ford and Beddows (8.1) show the important implications of what might be termed "speleogenetic wisdom" when studying ground water behaviour in karst. They examine some standard hydrogeological concepts in the light of knowledge of caves and their patterns, considering a range of case studies to identify the characteristic enhancement of porosity and permeability due to speleogenesis that occurs in carbonate rocks. The chapter focuses on unconfined carbonate aquifers as these are the most studied from the speleological perspective and most important for water supplies. Four aquifers, differing in rock type, recharge type (allogenic and autogenic), and age (Paleozoic, Mesozoic and Cenozoic), are described in detail to demonstrate the extent of dissolutional enhancement of porosity and permeability. It is shown that all four cases are similar in hydraulic function, despite the fact that some of them were previously characterized as different end members of a "karst ? non-karst" spectrum. Enhancement of porosity by dissolution is relatively minor: enhancement of permeability is considerable because dissolution has created dendritic networks of channels able to convey 94% or more of all flow in the aquifer, with fractures providing a small proportion and the matrix a negligible amount. These conclusions may be viewed as a warning to hydrogeologists working in carbonate terranes: probably the majority of unconfined aquifers function in a similar manner. Sampling is a major problem in their analysis because boreholes (the conventional exploration tool in hydrogeology) are unlikely to intersect the major channels that are conveying most of the flow and any contaminants in it. It is estimated, using examples of comprehensively mapped caves, that the probability of a borehole intersecting a conduit ranges from 1 in 50 to 1 in 1000 or more. Boreholes simply cannot be relied upon to detect the presence of caves or to ?characterise? the hydrologic functioning of cavernous aquifers. Wherever comprehensive evidence has been collected in unconfined carbonate aquifers (cave mapping plus boreholes plus lab analysis of core samples) it suggests that dissolution inexorably results in a similar structure, with channel networks providing most of the permeability of the aquifer, yet occupying a very minor fraction of its volume (Worthington, Ford and Beddows). Lowe (Chapter 8.2) focuses on developments in understanding the vital role played by karstic porosity, (broadly viewed as being the product of speleogenesis), in the migration of mineralizing fluids (or hydrocarbons) and in their deposition (or storage), and comments on the potential role of new speleogenetic concepts in developing greater understanding in the future. Although some early workers were clearly aware of actual evidence for some kind of relationship, and others noted its theoretical likelihood, it has been ignored by many until relatively recent times. This shortfall has gradually been redressed; new understanding of the extent and variety of karst processes is ensuring that new relationships are being recognized and new interpretations and models are being derived. The chapter does not pretend to give a comprehensive account of the topic but clearly demonstrates the wide applicability of speleogenetic knowledge to issues in economic geology. In Chapter 8.3 Aley provides an overview of the water and land-use problems that occur in areas with conduit aquifers. He stresses that sound land management must be premised on an understanding that karst is a three-dimensional landscape where the surface and subsurface are intimately and integrally connected. Failure to recognize that activity at the surface affects the subsurface, and the converse, has long been the root cause of many of the problems of water and land use in karst regions. Karst areas have unique natural resource problems, whose management can have major economic consequences. Although there is an extensive literature on the nature of particular problems, resource protection and hazard minimization strategies in karst, it rarely displays an advanced understanding of the processes of the conduit formation and their characteristics yet these will always be involved. This book does not pretend to be a definitive text on speleogenesis. However, it is hoped that readers will find it to be a valuable reference source, that it will stimulate new ideas and approaches to develop and resolve some of the remaining problems, and that it will promote an appreciation of the importance of speleogenetic studies in karst hydrogeology and applied environmental sciences. Acknowledgements: We sincerely thank all contributors for their willing cooperation in the long and difficult process of preparing this book, for their participation in developing its logic and methodology and their cheerful response to numerous requests. We thank all colleagues who discussed the work with us and encouraged it in many ways, even though not contributing to its content as authors. We are particularly grateful to Margaret Palmer for invaluable help in editing the English in many contributions, to Nataly Yablokova for her help in performing many technical tasks and to Elizabeth White who prepared comprehensive index. Our thanks are due to Dr. David Drew, Dr. Philip LaMoreaux, Dr. George Moore and Prof. Marian Pulina for reviewing the manuscript and producing constructive notes and comments on improvement of the final product. The organizational costs and correspondence related to the preparation of the book were partially sponsored by the National Speleological Society, the publisher. We thank David McClurg, the Chair of the NSS Special Publication Committee, for his extensive technical and organizational support in the preparation and publishing processes.

Designation of protected karstlands in Central America: A regional assessment, 2002, Kueny, J. A. , Day, M. J.
The IUCN World Commission on Protected Areas has recognized karst landscapes as important targets for designation as protected areas, and this study is a regional inventory of the Central American karst conservation situation. Central America is a significant international carbonate karst landscape, covering ~154,000 km2, roughly a quarter of the regional land area. The karstlands exhibit considerable topographic diversity, including cockpit and tower styles, together with extensive dry valleys, cave systems and springs. Some of the karst areas are well known, but others have yet to receive detailed scientific attention. Many of them have archaeological, historical, cultural, biological, aesthetic and recreational significance, but human impacts have been considerable. Conservation and protection legislation is variable in nature and effectiveness, and enforcement is problematic. About 18% of the Central American karst landscape has been afforded nominal protection through designation as protected areas. Regional levels of karstland protection are highly variable, with significant protection in the Yucatan peninsula, Honduras, and Belize; intermediate protection in Guatemala, Costa Rica, and Panama; and, as yet, no protected areas in Nicaragua or El Salvador. The situation remains fluid and the future of the Central American karstlands uncertain.

Results 16 to 30 of 42
You probably didn't submit anything to search for