Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That scaling factor is the ratio of characteristics of a model to those of the prototype [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for calibration (Keyword) returned 47 results for the whole karstbase:
Showing 16 to 30 of 47
Travel Times Along Selected Flow Paths of the Edwards Aquifer, Central Texas, 2001, Kuniansky E. L. , Fahlquist L. , Ardis A. F.

Flow path travel times in the structurally controlled, karstic Edwards aquifer were estimated using simulated ground-water levels obtained from a finite-element model. For this analysis, simulated monthly ground-water levels were averaged over an 11-year calibration period to minimize the transient effect of short-term recharge and discharge events. The 1978-89 calibration period was characterized by average to wetter-than-average climatic conditions; simulated water-level and spring-flow compared favorably with measured data. Flow paths for which travel times were estimated range from 1,250 to 10,000 feet wide and from about 8 to 180 miles long. Effective aquifer thickness and effective porosity can be highly variable and is poorly defined throughout most of the aquifer. Accordingly, travel-time estimates were computed within known or inferred thicknesses and porosities within known or inferred ranges of 350 to 850 feet and 15 to 35 percent, respectively. The minimum rock matrix porosity for each element was divided by 10 to estimate a minimum time of travel (a worst case time of travel). Travel times range from 14 to 160 years for a flow path from the Blanco River Basin to San Marcos Springs and from 350 to 4,300 years for a flow path from the West Nueces River Basin to Comal Springs. Travel times near the minimum of the ranges are similar in magnitude to those determined from tritium isotopes in spring water, thus supporting the hypothesis that effective porosity and effective thickness of the aquifer is less than the respective ranges. 

Coastal karst springs in the Mediterranean basin : study of the mechanisms of saline pollution at the Almyros spring (Crete), observations and modelling, 2002, Arfib B, De Marsily G, Ganoulis J,
Variations in salinity and flow rate in the aerial, naturally salty spring of Almyros of Heraklion on Crete were monitored during two hydrological cycles. We describe the functioning of the coastal karstic system of the Almyros and show the influence of the duality of the flow in the karst (conduits and fractured matrix) on the quality of the water resource in the coastal area. A mechanism of saltwater intrusion into this highly heterogeneous system is proposed and validated with a hydraulic mathematical model, which describes the observations remarkably well. Introduction. - Fresh groundwater is a precious resource in many coastal regions, for drinking water supply, either to complement surface water resources, or when such resources are polluted or unavailable in the dry season. But coastal groundwater is fragile, and its exploitation must be made with care to prevent saltwater intrusion as a result of withdrawal, for any aquifer type, porous, fractured or karstic. In karstic zones, the problem is very complex because of the heterogeneous nature of the karst, which makes it difficult to use the concept of representative elementary volume developed for porous or densely fractured systems. The karstic conduits focus the major part of the flow in preferential paths, where the water velocity is high. In coastal systems, these conduits have also an effect on the distribution of the saline intrusion. As was shown e.g. by Moore et al. [1992] and Howard and Mullings [1996], both freshwater and salt-water flow along the fractures and conduits to reach the mixing zone, or the zone where these fluids are superposed in a dynamic equilibrium because of their differences in density ; but the dynamics of such a saltwater intrusion are generally unknown and not represented in models. Such coastal karstic systems are intensely studied at this moment in the Mediterranean region [Gilli, 1999], both as above sea-level or underwater springs, for potential use in areas where this resource would be of great value for economic development. This article discusses the freshwater-saltwater exchange mechanisms in the karstic aquifer of the Almyros of Heraklion aquifer (Crete) and explains the salinity variations observed in the spring. First, the general hydrogeology of the study site is described, then the functioning of the spring : a main conduit drains the freshwater over several kilometres and passes at depth through a zone where seawater is naturally present. The matrix-conduit exchanges are the result of pressure differences between the two media. These processes are represented in a mathematical model that confirms their relevance. General hydrogeology of the studied site. - The karstic coastal system of the Almyros of Heraklion (Crete) covers 300 km2 in the Ida massif whose borders are a main detachment fault, and the Sea of Crete in the north, the Psiloritis massif (highest summit at 2,456 m) in the south and west, and the collapsed basin of Heraklion filled in by mainly neo-geneous marl sediments in the east. The watershed basin consists of the two lower units of characteristic overthrust formations of Crete (fig. 1) : the Cretaceous Plattenkalk and the Cretaceous Tripolitza limestones. The two limestone formations are locally separated by interbedded flysch or phyllade units that form an impervious layer [Bonneau et al., 1977 ; Fassoulas, 1999] and may lead to different flow behaviour within the two karstic formations. Neo-tectonic activity has dissected these formations with large faults and fractures. The present-day climate in Crete is of Mediterranean mountain type, with heavy rain storms and snow on the summits in winter. Rainfall is unevenly distributed over the year, with 80 % of the annual total between October and March and a year-to-year average of 1,370 mm. The flow rate of the spring is high during the whole hydrologic cycle, with a minimum in summer on the order of 3 m3.s-1 and peak flow in winter reaching up to 40 m3.s -1. The water is brackish during low flow, up to a chloride content of 6 g.l-1, i.e. 23 % of seawater, but it is fresh during floods, when the flow rate exceeds 15 m3.s-1. During the 1999-2000 and 2000-2001 hydrologic cycles, the water was fresh during 14 and 31 days, respectively. The water temperature is high and varies very little during the year (see table I). In the areas of Keri and Tilissos (fig. 1), immediately south of the spring, the city of Heraklion extracts water from the karstic system through a series of 15 wells with depth reaching 50 to 100 m below sea level. Initially, when the wells were drilled, the water was fresh, but nowadays the salinity rises progressively, but unequally from well to well (fig. 2). The relatively constant temperatures and salinities of the wells, during the hydrological cycle, contrast with the large salinity variations at the spring (fig. 2 and table I). They show that the karstic system is complex and comprises different compartments, where each aquifer unit reacts to its individual pressures (pumping, rainfall) according to its own hydrodynamic characteristics [Arfib et al., 2000]. The Almyros spring seems disconnected from the surrounding aquifer and behaves differently from that which feeds the wells (upper Tripolitza limestone). It is recharged by fresh water from the mountains, which descends to depths where it probably acquires its salinity. The spring would thus be the largest resource of the area, if it was possible to prevent its pollution by seawater. A general functioning sketch is proposed (fig. 3), which includes the different geological units of interest. Identification of the functioning of the Almyros spring through monitoring of physical and chemical parameters. - The functioning of the aquifer system of the Almyros spring was analysed by monitoring, over two hydrological cycles, the level of the spring, the discharge, the electric conductivity and the temperature recorded at a 30 min time interval. In the centre of the watershed basin, a meteorological station at an altitude of 800 m measures and records at a 30 min time interval the air temperature, rainfall, relative humidity, wind velocity and direction ; moreover, an automatic rain gauge is installed in the northern part of the basin at an altitude of 500 m. The winter floods follow the rhythm of the rainfall with strong flow-rate variations. In contrast, the summer and autumn are long periods of drought (fig. 7). The flow rate increases a few hours after each rainfall event ; the water salinity decreases in inverse proportion to the flow rate a few hours to a few days later. Observations showed that the water volume discharged at the Almyros spring between the beginning of the flow rate increase and the beginning of the salinity decrease is quite constant, around 770,000 m3 (fig. 4) for any value of the flow rate, of the salinity and also of the initial or final rainfall rates. To determine this constant volume was of the upmost importance when analyzing the functioning of the Almyros spring. The lag illustrates the differences between the pressure wave that moves almost instantaneously through the karst conduit and causes an immediate flow rate increase after rainfall and the movement of the water molecules (transfer of matter) that arrives with a time lag proportionate to the length of the travel distance. The variation of the salinity with the flow rate acts as a tracer and gives a direct indication of the distance between the outlet and the seawater entrance point into the conduit. In the case of the Almyros, the constant volume of expelled water indicates that sea-water intrusion occurs in a portion of the conduit situated several kilometres away from the spring (table II), probably inland, with no subsequent sideways exchange in the part of the gallery leading up to the spring. As the lag between the flow rate and the salinity recorded at the spring is constant, one can correct the salinity value by taking, at each time step, with a given flow rate, the salinity value measured after the expulsion of 770,000 m3 at the spring, which transforms the output of the system so as to put the pressure waves and the matter transfer in phase [Arfib, 2001]. After this correction, the saline flux at the spring, equal to the flow rate multiplied by the corrected salinity, indicates the amount of sea-water in the total flow. This flux varies in inverse proportion to the total flow rate in the high-flow period and the beginning of the low-flow period, thereby demonstrating that the salinity decrease in the spring is not simply a dilution effect (fig. 5). The relationship that exists between flow rate and corrected salinity provides the additional information needed to build the conceptual model of the functioning of the part of the Almyros of Heraklion aquifer that communicates with the spring. Freshwater from the Psiloritis mountains feeds the Almyros spring. It circulates through a main karst conduit that descends deep into the aquifer and crosses a zone naturally invaded by seawater several kilometers from the spring. The seawater enters the conduit and the resulting brackish water is then transported to the spring without any further change in salinity. The conduit-matrix and matrix-conduit exchanges are governed by the head differences in the two media. Mathematical modelling of seawater intrusion into a karst conduit Method. - The functioning pattern exposed above shows that such a system cannot be treated as an equivalent porous medium and highlights the influence of heterogeneous structures such as karst conduits on the quantity and quality of water resources. Our model is called SWIKAC (Salt Water Intrusion in Karst Conduits), written in Matlab(R). It is a 1 D mixing-cell type model with an explicit finite-difference calculation. This numerical method has already been used to simulate flow and transport in porous [e.g. Bajracharya and Barry, 1994 ; Van Ommen, 1985] and karst media [e.g. Bauer et al., 1999 ; Liedl and Sauter, 1998 ; Tezcan, 1998]. It reduces the aquifer to a single circular conduit surrounded by a matrix equivalent to a homogeneous porous medium where pressure and salinity conditions are in relation with sea-water. The conduit is fed by freshwater at its upstream end and seawater penetrates through its walls over the length L (fig. 6) at a rate given by an equation based on the Dupuit-Forchheimer solution and the method of images. The model calculates, in each mesh of the conduit and at each time step, the head in conditions of turbulent flow with the Darcy-Weisbach equation. The head loss coefficient {lambda} is calculated by Louis' formula for turbulent flow of non-parallel liquid streams [Jeannin, 2001 ; Jeannin and Marechal, 1995]. The fitting of the model is intended to simulate the chloride concentration at the spring for a given matrix permeability (K), depth (P) and conduit diameter (D) while varying its length (L) and its relative roughness (kr). The spring flow rates are the measured ones ; at present, the model is not meant to predict the flow rate of the spring but only to explain its salinity variations. Results and discussion. - The simulations of chloride concentrations were made in the period from September 1999 to May 2001. The depth of the horizontal conduit where matrix-conduit exchanges occur was tested down to 800 m below sea level. The diameter of the conduit varied between 10 and 20 m, which is larger than that observed by divers close to the spring but plausible for the seawater intrusion zone. The average hydraulic conductivity of the equivalent continuous matrix was estimated at 10-4 m/s. A higher value (10-3 m/s) was tested and found to be possible since the fractured limestone in the intrusion zone may locally be more permeable but a smaller value (10-5 m/s) produces an unrealistic length (L) of the saline intrusion zone (over 15 km). For each combination of hydraulic conductivity, diameter and depth there is one set of L (length) and kr (relative roughness) calibration parameters. All combinations for a depth of 400 m or more produce practically equivalent results, close to the measured values. When the depth of the conduit is less than 400 m, the simulated salinity is always too high. Figure 7 shows results for a depth of 500 m, a diameter of 15 m and a hydraulic conductivity of 10-4 m/s. The length of the saltwater intrusion zone is then 1,320 m, 4,350 m away from the spring and the relative roughness coefficient is 1.1. All the simulations (table II) need a very high relative roughness coefficient which may be interpreted as an equivalent coefficient that takes into account the heavy head losses by friction and the variations of the conduit dimensions which, locally, cause great head losses. The model simulates very well the general shape of the salinity curve and the succession of high water levels in the Almyros spring but two periods are poorly described due to the simplicity of the model. They are (1) the period following strong freshwater floods, where the model does not account for the expulsion of freshwater outside the conduit and the return of this freshwater which dilutes the tail of the flood and (2) the end of the low-water period when the measured flux of chlorides falls unexpectedly (fig. 5), which might be explained by density stratification phenomena of freshwater-saltwater in the conduit (as observed in the karst gallery of Port-Miou near Cassis, France [Potie and Ricour, 1974]), an aspect that the model does not take into account. Conclusions. - The good results produced by the model confirm the proposed functioning pattern of the spring. The regulation of the saline intrusion occurs over a limited area at depth, through the action of the pressure differences between the fractured limestone continuous matrix with its natural saline intrusion and a karst conduit carrying water that is first fresh then brackish up to the Almyros spring. The depth of the horizontal conduit is more than 400 m. An attempt at raising the water level at the spring, with a concrete dam, made in 1987, which was also modelled, indicates that the real depth is around 500 m but the poor quality of these data requires new tests to be made before any firm conclusions on the exact depth of the conduit can be drawn. The Almyros spring is a particularly favorable for observing the exchanges in the conduit network for which it is the direct outlet but it is not representative of the surrounding area. To sustainably manage the water in this region, it is essential to change the present working of the wells in order to limit the irreversible saline intrusion into the terrain of the upper aquifers. It seems possible to exploit the spring directly if the level of its outlet is raised. This would reduce the salinity in the spring to almost zero in all seasons by increasing the head in the conduit. In its present state of calibration, the model calculates a height on the order of 15 m for obtaining freshwater at the spring throughout the year, but real tests with the existing dam are needed to quantify any flow-rate losses or functional changes when there is continual overpressure in the system. The cause of the development of this karstic conduit at such a great depth could be the lowering of the sea level during the Messinian [Clauzon et al., 1996], or recent tectonic movements

Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico, 2002, Gonzalezherrera R. , Pinto I. , Gamboavargas J. ,
The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity

Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling, 2002, Cornaton F, Perrochet P,
One-dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems-such as karstic aquifers-using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented ID dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1D analytical dual-porosity model on reference hydraulic responses confirms the dependence of the exchange coefficient with the karstic network density. The use of the analytical model could also point out some fundamental structural properties of the karstic network that rule the shape of the hydraulic responses, such as density and connectivity. (C) 2002 Elsevier Science B.V. All rights reserved

Groundwater modelling in aquifers with highly karstic and heterogeneous characteristics (KHC) in Palestine, 2002, Froukh Lj,
Groundwater modelling is hindered by the lack of adequate information about the groundwater system and hence the need for an interactive and efficient system for data preparation and results analysis. Such a lack of information usually necessitates the use of tedious iterative methodology within a sensitivity analysis scheme. The heterogeneous aquifer systems complicate the issue since more data is required to simulate the system. This study demonstrates the integrated approach to bridge the gap between data handling and modelling. The karst cretaceous aquifer system (complex aquifer system) of the Eastern Basin in the West Bank is used to illustrate this approach. The groundwater modelling approach integrates the outputs from different programs for data preparation and analysis. These include (1) Groundwater Database (GWW) (2) Geographic Information System (GIS) (3) Groundwater Modelling System (GMS). In addition, the paper will summarize the data collection efforts, problems faced and experience gained working with heterogeneous media. This involves linking the results from various field investigations for groundwater development programs in the West Bank

Influence of solar luminosity over geomagnetic and climatic cycles as derived from speleothems, 2004, Ford Derek Clifford, Georgiev Leonid, Georgieva Desislava, Sanabria Michael, Shopov Yavor, Stoykova Diana, Tsankov Ludmil
We observed cycles presented in a luminescent solar insolation proxy record from a speleothem from Jewel Cave, South Dakota, US. We found cycles of orbital precession with periods of 23 and 19 ka and of obliquity of 41 ka and many others from non- orbital origin in this sample. We determined the Solar origin of the cycles with durations of 11500, 4400, 3950, 2770, 2500, 2090, 1960, 1670, 1460, 1280, 1195, 1145, 1034, 935, 835, 750 and 610 years. It was done by their detection both in proxy records of speleothem luminescence, D14C and the intensity of the geomagnetic dipole. It is well known that the main variations in the last two records are produced by the solar wind. The most intensive cycle discovered in this record has duration of 11.5 ka. It is not of orbital origin. It was found previously to be the most intensive cycle in the D14C calibration record and has been interpreted to be of terrestrial origin because "it is too strong to be of solar origin". Our studies suggest that it should be a solar cycle modulating the geomagnetic field and 14C reversed production as the other solar cycles do.

A simple model of karst spring flow using modified NRCS procedures, 2004, Barfield Bj, Felton Gk, Stevens Ew, Mccann M,
A simple model of spring flow in a karst watershed with numerous sinkholes is presented. The watershed is divided into subwatersheds and runoff volume calculated using the NRCS curve number procedure with corrections for actual antecedent moisture conditions using the 5-day antecedent rainfall volume as a parameter. The peak discharge for each subwatershed is calculated with the TR-55 unit discharge equations with time of concentration corrected for the flow through the epikarst and routed exponentially to the spring, using a calibration coefficient. Total discharge at the spring is calculated by summing attenuated peaks from each subwatershed, using a weighting factor based on the predicted arrival time for each peak flow. The model was calibrated on long-term flow data collected at the spring. The calibrated model was then evaluated on four storms measured subsequent to the calibration. The results were acceptable for all but one storm, but indicate the need for improved runoff volume calculation methods in karst watersheds. (C) 2004 Elsevier B.V. All rights reserved

14C Activity and Global Carbon Cycle Changes over the Past 50,000 Years, 2004, Hughen K. , Lehman S. , Southon J. , Overpeck J. , Marchal O. , Herring C. , Turnbull J. ,
A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation

Palaeo-climate reconstruction from stable isotope variations in speleothems: a review, 2004, Mcdermott, F.

Speleothems are now regarded as valuable archives of climatic conditions on the continents, offering a number of advantages relative to other continental climate proxy recorders such as lake sediments and peat cores. They are ideal materials for precise U-series dating, yielding ages in calendar years, thereby circumventing the radiocarbon calibration problems associated with most other continental records. Stable isotope studies in speleothems have shifted away from attempting to provide palaeo-temperature reconstructions to the attainable goal of providing precise estimates for the timing and duration of major O isotope-defined climatic events characterised by high signal to noise ratios (e.g. glacial/interglacial transitions, Dansgaard–Oeschger oscillations, the ‘8200- year’ event). Unlike the marine records, speleothem data sets are not ‘tuned’, and their independent chronology offers opportunities to critically assess leads and lags in the climate system, that in turn can provide important insights into forcing and feedback mechanisms. Improved procedures for the extraction and measurement of stable isotope ratios in fluid inclusions trapped in speleothems are likely to provide, in the near future, a much enhanced basis for the quantitative interpretation of O isotope ratios in speleothem calcite. The latter developments open up once again the tantalising prospect of palaeo-temperature estimates, but more importantly perhaps, provide a direct test for a new generation of general circulation models whose hydrological cycles will incorporate the ‘water isotopes’. The literature is reviewed briefly to provide for the reader a sense of the current state-of-the-art, and to provide some pointers for future research directions

Measurement of pH for field studies in karst areas., 2005, Sasowsky I. D. , Dalton C. T.
The determination of pH in karst waters is important for evaluating such chemical processes as cave growth, speleothem deposition, and overall water chemistry. Relatively small errors in pH readings can result in significant misinterpretations of the chemical processes taking place. For example, a pH error of 0.5 units would produce a correlative error in SIcalcite of 0.5. To ensure accuracy, pH must be measured in the field, but the conditions in karst settings make this hard to accomplish, and there is minimal published guidance available. Actions that help to improve data quality include: use of a good meter/electrode (accurate to 2 decimal places), careful preparation before field activities, cautious transport of instruments, frequent calibration, measurement in a beaker (not the water body), and allowance of time for equilibration. Instrumentation that allows measurement of very small samples, samples in wells, or continuous monitoring are available, but are more expensive and usually not as accurate.

Spatial and temporal variability of water salinity in an ephemeral, arid-zone river, central Australia, 2005, Costelloe Jf, Grayson Rb, Mcmahon Ta, Argent Rm,
This study describes the spatial and temporal variability of water salinity of the Neales-Peake, an ephemeral river system in the arid Lake Eyre basin of central Australia. Saline to hypersaline waterholes occur in the lower reaches of the Neales-Peake catchment and lie downstream of subcatchments containing artesian mound springs. Flood pulses are fresh in the upper reaches of the rivers (< 200 mg 1(-1)). In the salt-affected reaches, flood pulses become increasingly saline during their recession. It is hypothesized that leakage from the Great Artesian Basin deposits salt at the surface. This salt is then transported by infrequent runoff events into the main river system over long periods of time. The bank/floodplain store downstream of salt-affected catchments contains high salt concentrations, and this salt is mobilized during the flow recession when bank/floodplain storage discharges into the channel. The salinity of the recession increases as the percentage of flow derived from this storage increases. A simple conceptual model was developed for investigating the salt movement processes during flow events. The model structure for transport of water and salt in the Neales-Peake catchment generated similar spatial and temporal patterns of salt distribution in the floodplain/bank storage and water flow as observed during flow events in 2000-02. However, more field-data collection and modelling are required for improved calibration and description of salt transport and storage processes, particularly with regard to the number of stores required to represent the salt distribution in the upper zone of the soil profile. Copyright (c) 2005 John Wiley & Sons, Ltd

Steady- and unsteady-state lumped parameter modelling of tritium and chlorofluorocarbons transport: hypothetical analyses and application to an alpine karst aquifer, 2005, Ozyurt N. N. , Bayari C. S. ,
Determination of a groundwater's mean residence time with the aid of environmental tracers is common in hydrogeology. Many of the lumped parameter (LP) applications used for this purpose have been based on steady-state models. However, the results may be misleading if a steady LP model is used to simulate the environmental tracer transport in an unsteady aquifer. To test this hypothesis, the results of steady and unsteady versions of several LP models were evaluated theoretically and in an alpine karst aquifer case by using tritium, oxygen-18 and chlorofluorocarbons (CFCs). The results reveal that the mean residence times obtained may be significantly different between the steady and unsteady versions of the same model. For the karst aquifer investigated, a serially connected exponential and a plug flow model were run under unsteady conditions. It is shown that outflux calibration with an unsteady model provides a firm basis in evaluating the results of models. An outflux-calibrated unsteady model predicted reasonably the observed series of water isotopes. The calibrated model's CFCs output overpredicts the observed concentrations, probably because of the time lag in the unsaturated zone of the alpine karst aquifer. Copyright (c) 2005 John Wiley & Sons, Ltd

Large kinetic isotope effects in modern speleothems, 2006, Mickler Patrick J. , Stern Libby A. , Banner Jay L. ,
The application of stable isotopes in speleothem records requires an understanding of the extent to which speleothem calcite isotopic compositions reflect the compositions of the cave waters from which they precipitate. To test for equilibrium precipitation, modern speleothem calcite was grown on glass plates, so that the carbon and oxygen isotope composition of the calcite and the water from which it precipitated could be directly compared. The plates were placed on the tops of three actively growing stalagmites that occupy a 1 m2 area in Harrison's Cave, Barbados, West Indies. Only some of the plate {delta}13C values and none of the plate {delta}18O values correspond to equilibrium values, indicating significant kinetic isotope effects during speleothem calcite growth. We investigate herein mechanisms that may account for the kinetic isotope effects. On each plate, speleothem calcite was deposited with distinct {delta}18O and {delta}13C compositions that increase progressively away from the growth axis, with up to 6.6{per thousand} 13C and 1.7{per thousand} 18O enrichments. The positive {delta}13C versus {delta}18O trends are likely a result of 18O and 13C Rayleigh-distillation enrichment in the HCO3- reservoir owing to progressive CO2 degassing and CaCO3 precipitation. The magnitude of the {delta}13C versus {delta}18O slope is likely controlled by the extent to which CO2 hydration-hydroxylation reactions buffer the oxygen isotope composition of the HCO3- reservoir during calcite precipitation. Complete oxygen isotopic buffering of the HCO3- reservoir by CO2 hydration-hydroxylation reactions will produce a vertical {delta}13C versus {delta}18O slope in calcite sampled along a growth layer. As oxygen isotope buffering of the HCO3- reservoir decreases to no buffering, the {delta}13C versus {delta}18O slope in calcite sampled along a growth layer will decrease from vertical to 0.52 at the cave temperature. In this study, modern speleothem calcite sampled along the growth layer produced a {delta}13C versus {delta}18O slope of 3.9, indicating incomplete oxygen isotope buffering of the HCO3- reservoir during calcite precipitation. Both modern and Holocene speleothem calcite from Barbados, sampled temporally along the growth axis, shows similar positive {delta}13C versus {delta}18O slopes. These results, along with the spatial variations in glass plate calcite carbon and oxygen isotope compositions, suggest that the isotopic composition of the Holocene speleothems is in part controlled by non-equilibrium isotope effects. In addition, there is a correlation between stalactite length and oxygen and carbon isotope ratios of calcite precipitated on the corresponding stalagmite and glass plate, which may be due to 13C and 18 O enrichment of the HCO3- reservoir during CO2 degassing-calcite precipitation along the overhanging stalactite. We compiled 165 published speleothem stable isotope records with a global distribution and found that most of these records show a positive covariation between {delta}13C and {delta}18O values. Speleothem stable isotope records may be influenced by kinetic isotope effects such that temperature-controlled equilibrium fractionation models alone cannot directly explain the significance of the variations in these records. Advancing the interpretation of these records requires the calibration of cave environmental conditions with the non-equilibrium isotope effects that cause {delta}13C and {delta}18O covariations in speleothems

A multicell karstic aquifer model with alternative flow equations, 2006, Rozos Evangelos, Koutsoyiannis Demetris,
A multicell groundwater model was constructed to investigate the potential improvement in the modelling of karstic aquifers by using a mixed equation suitable for both the free surface and pressure flow conditions in karstic conduits. To estimate the model parameters the shuffled complex evolution (SCE) optimisation method was used. This ensured a fast and objective model calibration. The model was applied to two real-world karstic aquifers and it became clear that in case of absence of water level measurements, the use of the mixed equation did not improved the performance. In cases where both spring discharge and water level measurements were available, the use of the mixed equation proved to be advantageous in reproducing the features of the observed time series especially of the water level

Long-term changes in the cave atmosphere air temperature as a result of periodic heliophysical processes, 2006, Stoeva Penka, Stoev Alexey, Kiskinova Nadya,
Climatic trends connected with short- and long-period variations of the solar activity occur as a reaction even in such conservative media as the air volumes of karst caves. The yearly mean air temperatures in the zone of constant temperatures of four show caves in Bulgaria were studied for a period of 36 years (1968-2003). The examination was made by everyday noon measurements in Ledenika, Saeva dupka, Snezhanka and Uhlovitsa cave. The caves are situated at different altitudes and geographic latitude. Seasonal fluctuations of the yearly mean air temperature in the ZCT of the explored caves have been identified by Fourier analysis. The same analysis has been applied for the Sunspot number and Apmax indices, which are representatives of the solar and geomagnetic activity, for the same period of data available. Autocorrelograms have been used for examination of the seasonal patterns of the air temperatures in the ZCT in every cave and in Sunspot number and Apmax indices. Cross-spectrum analysis has been applied for retrieving the correlations between air ZCT temperatures in the caves and solar and geomagnetic activity. It has been found that the correlation between ZCT temperature time series and sunspot number is better than that between the cave air temperature and Apmax indices. It has been found that is rather connected with the first peak in geomagnetic activity, which is associated with transient solar activity, i.e., coronal mass ejections (CMEs) than with the second one, which is higher and connected with the recurrent high speed streams from coronal holes (Webb, D.F., 2002. CMEs and the solar cycle variation in their geoeffectiveness. In: Wilson, A. (Ed.), Proceedings of the SOHO 11 Symposium on From Solar Min to Max: Half a Solar Cycle with SOHO, 11-15 March 2002, Davos, Switzerland. ESA Publications Division, Noordwijk, 2002, ISBN 92-9092-818-2, pp. 409-419). This work can contribute to studying the mechanisms of atmospheric circulation changes and calibration of long-period climatic data read from cave speleothems and deposits

Results 16 to 30 of 47
You probably didn't submit anything to search for