Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That karst couvert is (french.) see covered karst.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for removal (Keyword) returned 84 results for the whole karstbase:
Showing 16 to 30 of 84
Geomorphology of the Tertiary gypsum formations in the Ebro Depression (Spain), 1998, Elorza Mg, Santolalla Fg,
This paper reviews the current knowledge of the mainly karstic geomorphological features developed in the evaporitic formations of the Ebro Depression (northern Spain). Special emphasis is given to the recently published and unpublished scientific advances. The gypsum formations, of Tertiary age, have an extensive outcrop area within the Ebro Depression. Here, their morphogenesis is controlled mainly by processes of surface and subsurface dissolution acting on the gypsum. Outstanding landforms in the gypsum terrain include saline lakes developed in flat bottom dolines (saladas). Other characteristic morphologies include karren and gypsum domes, which occur on a decimetre scale. Where the gypsum is covered by Quaternary alluvial deposits the karstification processes are especially intense and cause subsidence phenomena. Karstic subsidence affects stream terraces, mantled pediments and infilled valleys, which in the region are called vales. Dissolution-induced synsedimentary subsidence has produced interesting geological features, which include significant thickening and deformation of the alluvial deposits. In contrast to the rapid removal of gypsum by dissolution, the amount of gypsum removed by erosion is low. Water erosion studies carried out on gypsiferous slopes of the Ebro Depression, indicate that the sediment yield ranges from 0.59 to 7.82 t/ha/year. This low yield results from the high infiltration capacity of the soils. Subsidence caused by gypsum dissolution has important socioeconomic consequences in the Ebro Depression. The active alluvial karstification of the gypsum causes numerous sinkholes that are harmful to linear structures (roads, railway Lines, irrigation channels), buildings and agricultural land. Unforeseen catastrophic subsidence also puts human Lives at risk. The benefits of such terrains include thickened alluvial deposits which act as valuable water reservoirs and which form excellent sources of aggregates. Fluvial valleys in this gypsiferous terrain commonly show an asymmetrical geometry with prominent gypsum scarps at one side. These gypsum scarps are affected by numerous landslides. These slope movements are hazardous, may dam rivers and cause flooding of the alluvial plains. (C) 1998 Elsevier Science B.V. All rights reserved

The hydrogeological effect of quarrying karstified limestone: options for prediction and mitigation, 1998, Hobbs S. L. , Gunn J. ,
The hydrogeological effect of limestone extraction from open pits (quarries) depends on the location of the site in the landscape, the vertical and horizontal extent of the excavation, the methods used to excavate the stone, and the extent of karstification. Groundwater quality is commonly affected by quarrying through increased fine sediment concentrations and accidental spillages. Removal of any soil cover allows direct access for pollutants into the aquifer, a problem which may be exacerbated by licensed or illegal tipping of waste following cessation of stone extraction. Quarrying also removes the entire subcutaneous (epikarstic) zone which is an important ground-water store, together with part or all of the unsaturated zone. Pumping of water from the excavation will change the ground-water balance and can alter the direction and amounts of conduit flow, particularly if the quarry extends beneath the water table. Prediction of such impacts is difficult, especially when the limestone is karstified, such that there will always be a degree of uncertainty associated with the impact of the workings. Hence, it is essential that for new quarries monitoring is undertaken prior to, throughout, and following mineral working, with options for mitigation if mineral working causes an unacceptable impact. When a quarry ceases to be worked, the direct impacts on groundwater quality may rapidly decrease but there are important implications for after-use of the site. Impacts on groundwater quantity are likely to be more long-term

Microclimate Study of Kartchner Caverns, Arizona, 1999, Buecher, R. H.
A detailed two-year study of the microclimate in Kartchner Caverns determined that the most significant problem in maintaining the microclimate of the cave is the potential for drying out due to increased airflow. Two factorsa small, hypothesized upper second entrance and a slight geothermal warming of the cavecontrol natural airflow and increase the amount and intensity of winter air exchange. The average amount of water reaching the cave is 7.9 mm/yr, only twice the amount lost by evaporation from cave surfaces. Kartchner Caverns has an average relative humidity (RH) of 99.4%. Useful measurement of RH required a dewpoint soil psychrometer rather than a sling psychrometer. Moisture loss from cave surfaces is proportional to relative humidity, and small changes in RH have a dramatic effect on evaporation from cave surfaces. A lowering of RH to 98.7% would double the evaporation rate and start to dry out the cave. The volume of air exchange in the cave was estimated from direct measurement, changes in CO2 concentration, and temperature profile models. All of these methods are consistent with a volume of 4,000 m/day entering the cave during the winter. During the summer, the direction of airflow reverses and the volume of air leaving the cave is much smaller than during the winter months. Surface air is almost always drier than cave aironly during the summer months when rain occurs does outside air contain more moisture. However, the rate of air exchange is greatly reduced during the summer, which minimizes any potential effect of increased outside moisture. Radon concentrations in the cave are high enough to be of concern for long-time employees but not for the general public. Radon222 concentrations average 90 pCi/L and radon daughters average 0.77 Working Levels (WL) in the main part of the cave. During the winter, radon levels in the Echo Passage are up to six times higher than the rest of the cave due to the passages stable microclimate and limited air movement, which greatly reduces radon removal by plateout. Natural removal by ventilation is only a minor factor in determining radon levels in the rest of the cave.

Agriculture, grazing and land changes at the Serra de Tramuntana Karstic Mountains, 1999, Gins Angel
Karst landforms are one of the most outstanding characteristics of the Serra de Tramuntana range on the island of Mallorca, especially regarding traditional farming and the landscape wilderness. Good examples of polje-like depressions, dolines, karstic gorges and karrenfields are widely distributed over the mountain range. Owing to karrenfields occupying a large surface area in the Serra to the exclusion of arable land, the traditional activity based on the repetitive burning of the Ampelodesmos mauritanica brushwoods for cattle-raising promotes hastening deforestation and soil removal.

Comparison of stormwater management in a karst terrane in Springfield, Missouri - case histories, 1999, Barner Wl,
Control of stormwater in sinkhole areas of Springfield, MO has involved the utilization of several standard approaches: concrete-lined channels draining into sinkholes; installation of drainage pipes into the sinkhole 'eyes' (swallow holes); filling of sinkholes; elaborate drains or pumps to remove stormwater from one sinkhole and discharging into another drainage basin or sinkhole; and enlargement of swallow holes by excavation to increase drainage capacity. Past planning considerations and standard engineering approaches have resulted in flooding of sinkholes and drainage areas, including residential, industrial and commercial developments. Having recognized the inadequacy of existing designs to control flooding and the need to accommodate increased runoff from future development, the City of Springfield adopted an ordinance (effective 19 June 1989 and modified in 1990 and 1993) in response to public pressure and concerns over flooding in sinkholes and sinkhole drainage areas. Three sites were analyzed to examine the effectiveness of contrasting design approaches to stormwater management. These sites differ in vegetation, on-site/off-site considerations, and types of development proposed. All three sites are located within the East Cherry Street Sinkhole Area. The first site, a wooded tract with unmodified sinkholes was cleared and developed for residential use. Discharge of stormwater was directed into sinkholes, and erosion control consisted of hydro-mulching and sedimentation fences in sinkhole areas. East of this location are two parcels which differ in removal of vegetation and off-site drainage relationships. Stormwater design in these sites was adapted for modifications made to sinkholes during railroad and highway construction several decades earlier. Sediment fencing, hydro-mulching and detention berms augment infiltration, restrict erosion, retard discharge to sinkholes, and incorporate off-site considerations. Ongoing observations of stormwater behavior indicate problems of flooding and sediment control at the western site but minimal disruptions of existing drainage patterns at the eastern sites. Design calculation for the western site show adequate volume retention in sinkholes, but different design approaches were implemented to 'soften' the impact of stormwater discharging into these sinkholes, allowing for minimal disruptions in the natural drainage network. The lack of recognition of sinkholes as integral parts of dynamic hydrologic systems may result in problems with on-site/off-site drainage. Standard engineering designs for stormwater detention are not appropriate for the hydraulic characteristics of the shallow karst drainage network. While runoff estimations are conservative, the design calculations fall short of adequately addressing actual stormwater runoff characteristics. (C) 1999 Elsevier Science B.V. All rights reserved

Combustion Oil pollution of Pazinska Jama - a major Ecological incident in the Karst., 1999, Kuhta M.
The pollution of Pazincica river occurred in August 1997 as a consequence of uncontrolled leakage of vast quantities of oil from a ruptured pipe that connects the oil reservoir and the oil combustion facility of the factory KTI "Pazinka". The oil together with waste waters from the factory first discharged into the watercourse Saltarija and then flowed into the downstream part of Pazincica River. The spilled combustion oil was a threat to the groundwater of the wider region of Istria so extensive and intensive measures were undertaken for its removal. Within these prevention measures two speleological investigations of the Pazincica ponor (Pazinska jama- Foiba di Pisino) were undertaken. It was determined that due to favourable hydrological conditions (the discharge of Pazincica river was 50 l/s) and the fast reaction time of the intervention, only small quantities of oil managed to enter the ponor. On the other hand approximately 168 m3 of combustion oil was detached from the surface watercourse. Unfortunately the speleological examination of the ponor determined a high degree of underground pollution caused by discharge of waste waters from the city of Pazin and its industries into the Pazincica River. Also traces of past unregistered combustion oil pollution were found within the cavern.

Vertical zonation of the speleogenetic space, 1999, Š, Uš, Terš, Ič, France

The point of this paper is to demonstrate that not only the spatial domain where underground karst phenomena are being systematically transformed exist but also that this knowledge makes the role of caves within the geospeleological space/time more consistent. A true cave is any underground karst feature resulting from mass removal, regardless of its dimensions provided that the trajectory of the formative water passes through the cave and that the mass is removed in liquid phase (solution). Speleogenetic space is defined as that portion of the Earth's crust within which karst caverns may be formed. Thus, a karstified rock mass is defined as activated speleogenetic space. Due to the effects of denudation and watertable lowering, as the time passes a single cave seems to move upwards through speleogentic space, until it reaches the surface. The denudational logic of the karst surface is vertical, and the rock suffers disintegration throughout the thickness of its outermost layers. The same argument applies also to in-rock features. Consequently, the idea of the speleothanatic zone is introduced. Within it all of the rock is attacked, on any possible surface, and the final result is its complete annihilation. It may be expected that all structures, of any origin, that expose the rock surface to contact with aggressive water, will evolve via some "speleothanatic" progression. It is demonstrated that three vertical zones of specific formative/de-formative processes exist within speleogenetic space.


Sand speleothems: an Australian example, 1999, Grimes, K. G.

Sand speleothems have formed in sea caves at Loch Ard Gorge, Victoria, Australia, by the localised precipitation of calcium carbonate in loose sand that fills the caves. Calcite-saturated waters have entered the caves from the surrounding porous limestone, either dripping onto the sand, or seeping directly into it from the walls. Removal of the uncemented sand has exposed the cemented formations which have shapes analogous to those of conventional stalagmites, stalactites and shelves.


Uncalculated impacts of unsustainable aquifer yield including evidence of subsurface interbasin flow, 2000, Bacchus St,
Unsustainable withdrawals from regional aquifers have resulted in adverse impacts considerable distances from the point locations of supply wells. In one area of the southeastern (SE) Coastal Plain, conservative estimates for repair/replacement of some residential wells damaged or destroyed by unsustainable yield from the Floridan aquifer system exceeded $4 million. However, a comprehensive assessment of damage/economic loss to private property and public resources due to unsustainable yield from that regional karat aquifer has not been made. Uncalculated direct costs to home-owners from damage attributed to those withdrawals are associated with destruction of homes from increased sinkhole formation, devalued waterfront property, and removal of diseased and dead trees. Examples of other uncalculated economic burdens resulting from unsustainable aquifer yield in the SE Coastal Plain include: (1) irreversible damage to the aquifer matrix and concomitant increased potential for groundwater contamination, (2) large-scale wildfires with subsequent degradation of air quality, debilitation of transportation corridors, and destruction of timber, wildlife habitat and property, and (3) destruction of 'protected' natural areas. This paper provides a general background of the regional Floridan aquifer system's karst characteristics, examples of known impacts resulting from ground water mining in the SE Coastal Plain, and examples of additional damage that may be related to unsustainable yield from the Upper Floridan aquifer. Costs of these impacts have not been calculated and are not reflected in the price users pay for ground water. Evidence suggests that the classic watershed management approach must be revised in areas with mined regional karst aquifers to include impacts of induced recharge from the surficial aquifer, and subsurface interbasin flow. Likewise, associated impacts to surface water and interrelated systems must be calculated The true cost of groundwater mining to this and future generations should be determined using a multidisciplinary approach

Limestone dissolution rates in karst environments, 2000, Dreybrodt W. , Eisenlohr L.
The removal of limestone from the bedrock at the surface and below ground by CO2-containing aqueous solutions sculptures karst landscapes and complex karst aquifers. To understand the evolution of such karstic features requires the knowledge of dissolution rates under various hydrogeological conditions. These rates are controlled by several complex mechanisms: 1) The rate equations of Plummer et al. (1978), from which surface reaction rates can be obtained when the concentrations of reacting species at the surface are known. 2) The slow reaction of CO2 to H+ and HCO3, which provides the H+ ion for converting carbonate to bicarbonate ions. 3) Mass transport by diffusion, either in laminar or turbulent flow. 4) Inhibition of surface reaction rates by the presence of impurities in natural carbonate minerals. 5) Open- or closed-system conditions with respect to CO2, under which dissolutional removal of limestone is active. Depending on the actual conditions each of these processes can greatly effect dissolution rates. This paper addresses these problems and provides data, which can be used to obtain realistic dissolution rates, when solutions flow laminarly in narrow fractures, but also for turbulent flow in large conduits, and a variety of other different hydrogeological conditions. These data are also necessary as input for modeling the evolution of karst.

Speleogenesis on tectonically active carbonate islands, 2000, Gunn J. , Lowe D. J.
Studies of the geologically young, relatively porous limestones on Tongatapu Island in the Tongan archipelago suggest that the effect of dissolution at the interface between fresh and saline groundwater has been, and continues to be, crucial to the inception and development of underground conduits within young carbonate rock sequences. So far as it is possible to reconstruct the earliest speleogenetic events in the older preserved sequences on the nearby 'Eua Island, it appears that the processes that acted upon young reefal and back-reef carbonates during the Eocene were effectively the same as the processes that have acted on subsequent deposits and are still active today. It is commonly assumed that tectonism promotes the erosional removal of any early speleogenetic activity on carbonate islands and coasts. However, there is evidence on 'Eua to suggest that littoral cave systems and higher level conduits that target upon them, may survive gentle uplift, or even more extreme tectonism. This raises the possibility that some of the caves that can be explored today in both tropical and extra-tropical areas owe their origins to development of cavernous porosity in the littoral zone that was penecontemporaneous with rock formation.

Some case studies of speleogenesis by sulfuric acid, 2000, Lowe D. J. , Bottrell S. H. , Gunn J.
Minerals that can weather to produce sulfuric acid directly or indirectly, with or without microbial mediation, occur as trace components in most carbonate sequences, but they are more concentrated at specific horizons. The latter comprise beds of atypical lithology, together termed inception horizons, and they are commonly associated with breaks between major depositional cycles. Some cycle boundaries are marked by concentrations of sulfide minerals, particularly pyrite, that are readily oxidized to generate sulfuric acid. Cycle boundaries may also be marked by the presence of primary evaporite minerals such as gypsum, and their removal by direct dissolution or by their reduction to hydrogen sulfide may be implicated in early porosity development. Though few caves in carbonate sequences are largely, or entirely, the product of calcite dissolution by sulfuric acid or of evaporite removal, such processes may play an important role in cave inception. This chapter examines a number of situations where processes other than carbonic acid dissolution have played an important role in secondary porosity generation and influenced subsequent speleogenesis.

Speleogenesis: Evolution of Karst Aquifers., 2000,
The aim of this book is to present advances made in recent decades in our understanding of the formation of dissolutional caves, and to illustrate the role of cave genetic ( speleogenetic ) processes in the development of karst aquifers. From the perspective of hydrogeology, karst ground water flow is a distinct kind of fluid circulation system, one that is capable of self-organization and self-development due to its capacity to dissolve significant amounts of the host rock and transport them out of the system. Fluid circulation in soluble rocks becomes more efficiently organized by creating, enlarging and modifying patterns of cave conduits, the process of speleogenesis. We can assert that karst ground water flow is a function of speleogenesis and vice versa . The advances in cave science are poorly appreciated in what may be termed ?mainstream hydrogeology?, which retains a child-like faith in flow models developed in the sand box. Many karst students also will not be aware of all emerging concepts of cave origin because discussions of them are scattered through journals and books in different disciplines and languages, including publications with small circulation. An understanding of principles of speleogenesis and its most important controls is indispensable for proper comprehension of the evolution of the karst system in general and of karst aquifers in particular. We hope this book will be useful for both karst and cave scientists, and for general hydrogeologists dealing with karst terranes. This book is a pioneer attempt by an international group of cave scientists to summarize modern knowledge about cave origin in various settings, and to examine the variety of approaches that have been adopted. Selected contributions from 44 authors in 15 nations are combined in an integrated volume, prepared between 1994 and 1998 as an initiative of the Commission of Karst Hydrogeology and Speleogenesis, International Speleological Union. Despite a desire to produce an integrated book, rather than a mere collection of papers, the editors' policy has not been directed toward unifying all views. Along with some well-established theories and approaches, the book contains new concepts and ideas emerging in recent years. We hope that this approach will stimulate further development and exchange of ideas in cave studies and karst hydrogeology. Following this Introduction, (Part 1), the book is organized in seven different parts, each with sub-chapters. Part 2 gives a history of speleogenetic studies, tracing the development of the most important ideas from previous centuries (Shaw, Chapter 2.1) through the early modern period in the first half of this century (Lowe, Chapter 2.2) to the threshold of modern times (W.White, Chapter 2.3). The present state of the art is best illustrated by the entire content of this book. Part 3 overviews the principal geologic and hydrogeologic variables that either control or significantly influence the differing styles of cave development that are found. In Chapter 3.1 Klimchouk and Ford introduce an evolutionary approach to the typology of karst settings, which is a taken as a base line for the book. Extrinsic factors and intrinsic mechanisms of cave development change regularly and substantially during the general cycle of geological evolution of a soluble rock and , more specifically, within the hydrogeologic cycle. The evolutionary typology of karst presented in this chapter considers the entire life cycle of a soluble formation, from deposition (syngenetic karst) through deep burial, to exposure and denudation. It helps to differentiate between karst types which may concurrently represent different stages of karst development, and is also a means of adequately classifying speleogenetic settings. The different types of karst are marked by characteristic associations of the structural prerequisites for groundwater flow and speleogenesis, flow regime, recharge mode and recharge/discharge configurations, groundwater chemistry and degree of inheritance from earlier conditions. Consequently, these associations make a convenient basis to view both the factors that control cave genesis and the particular types of caves. Lithological and structural controls of speleogenesis are reviewed in general terms in Chapters 3.2 (Klimchouk and Ford). Lowe in Chapter 3.3 discusses the role of stratigraphic elements and the speleo-inception concept. Palmer in Chapter 3.4 overviews the hydrogeologic controls of cave patterns and demonstrates that hydrogeologic factors, the recharge mode and type of flow in particular, impose the most powerful controls on the formation of the gross geometry of cave systems. Hence, analysis of cave patterns is especially useful in the reconstruction of environments from paleokarst and in the prediction and interpretation of groundwater flow patterns and contaminant migration. Any opportunity to relate cave patterns to the nature of their host aquifers will assist in these applied studies as well. Osborne (Chapter 3.7) examines the significance of paleokarst in speleogenesis. More specific issues are treated by Klimchouk (The nature of epikarst and its role in vadose speleogenesis, Chapter 3.5) and by V.Dublyansky and Y.Dublyansky (The role of condensation processes, Chapter 3.6). Part 4 outlines the fundamental physics and chemistry of the speleogenetic processes (Chapter 4.1) and presents a variety of different approaches to modeling cave conduit development (Chapter 4.2). In Chapter 4.1, the chemical reactions during the dissolution of the common soluble minerals, calcite, gypsum, salt and quartz, are discussed with the basic physical and chemical mechanisms that determine their dissolution rates. As limestone is the most common karst rock and its dissolution is the most complex in many respects, it receives the greatest attention. Dreybrodt (Section 4.1.1) and Dreybrodt and Eisenlohr (Section 4.1.2) provide advanced discussion and report the most recent experimental data, which are used to obtain realistic dissolution rates for a variety of hydrogeologic conditions and as input for modeling the evolution of conduits. Although direct comparisons between theoretical or analytical dissolution rates and those derived from field measurements is difficult, a very useful comparison is provided by W.White (Section 4.1.3). The bulk removal of carbonate rock from karst drainage basins can be evaluated either by direct measurement of rock surface retreat or by mass balance within known drainage basins. All of these approaches make sense and give roughly accurate results that are consistent with theoretical expectations. It is well recognized today that the earliest, incipient, phases of speleogenesis are crucial in building up the pattern of conduits that evolve into explorable cave systems. It is difficult to establish the major controls on these initial stages by purely analytical or intuitive methods, so that modeling becomes particularly important. Various approaches are presented in Chapter 4.2. Ford, Ewers and Lauritzen present the results of systematic study of the propagation of conduits between input and output points in an anisotropic fissure, using a variety of hardware and software models, in series representing the "single input", "multiple inputs in one rank", and "multiple inputs in multiple ranks" cases (Section 4.2.1). The results indicate important details of the competitive development of proto-conduits and help to explain branching cave patterns. In the competition between inputs, some principal tubes in near ranks first link ("breakthrough") to an output boundary. This re-orients the flowfields of failed nearby competitors, which then extend to join the principal via their closest secondaries. The process extends outwards and to the rear, linking up all inputs in a "cascading system". The exploding growth of computer capability during the last two decades has greatly enhanced possibilities for digital modeling of early conduit development. Investigating the growth of a single conduit is a logical first step in understanding the evolution of caves, realized here by Dreybrodt and Gabrov?ek in the form of a simple mathematical model (Section 4.2.2) and by Palmer by numerical finite-difference modeling (Section 4.2.3). The models show that positive feedback loops operate; widening a fracture causes increasing flow through it, therefore dissolution rates increase along it and so on, until finally a dramatic increase of flow rates permits a dramatic enhancement of the widening. This breakthrough event terminates the initial stage of conduit evolution. From then on the water is able to pass through the entire conduit while maintaining sufficient undersaturation to preserve low-order kinetics, so the growth rate is very rapid, at least from a geological standpoint -- usually about 0.001-0.1 cm/yr. The initiation ("breakthrough") time depends critically on the length and the initial width of the fracture and, for the majority of realistic cases, it covers a time range from a few thousand years to ten million years in limestones. The modeling results give a clear explanation of the operation of selectivity in cave genesis. In a typical unconfined karst aquifer there is a great range of enlargement rates along the competing flow routes, and only a few conduits will grow to enterable size. The modeling also provides one starting point (others are discussed in Chapter 5.2) to explain uniform maze patterns, which will be favored by enlargement of all openings at comparable rates where the discharge/length ratio is great enough. Single-conduit modeling has the virtue of revealing how the cave-forming variables relate to each other in the simplest possible way. Although it is more difficult to extend this approach to two dimensions, many have done so (e.g. Groves & Howard, 1994; Howard & Groves, 1995; in this volume ? Ford, Ewers and Lauritzen, Section 4.2.1; Dreybrodt and Siemers, Section 4.2.4, and Sauter and Liedl, Section 4.2.5). The modeling performed by Dreybrodt and Siemers shows that the main principles of breakthrough derived from one-dimensional models remain valid. The evolution of karst aquifers has been modeled for a variety of different geological settings, including also variation in lithology with respect to the dissolution kinetics. Sauter and Liedl simulate the development of conduits at a catchment scale for fissured carbonate rocks with rather large initial openings (about 1 mm). The approach is based upon hydraulic coupling of a pipe network to matrix continuum in order to represent the well-known duality of karst aquifer flow systems. It is also shown how understanding of the genesis of karst aquifers and modeling of their development can assist in characterization of the conduit system, which dominates flow and transport in karst aquifers. An important point that has emerged from cave studies of the last three decades is that no single speleogenetic model applies to all geologic and hydrologic settings. Given that settings may also change systematically during the evolutionary geological cycles outlined above (Chapter 3.1), an evolutionary approach is called for. This is attempted in Part 5, which is organized to give extended accounts of speleogenesis in the three most important settings that we recognize: coastal and oceanic (Chapter 5.1), deep-seated and confined (Chapter 5.2) and unconfined (Chapter 5.3). Each Chapter begins with a review of modern ideas on cave development in the setting, followed by representative case studies. The latter include new accounts of some "classic" caves as well as descriptions of other, little-known cave systems and areas. Readers may determine for themselves how well the real field examples fit the general models presented in the introductory sections. Mylroie and Carew in Chapter 5.1 summarize specific features of cave and karst development in young rocks in coastal and island settings that result from the chemical interactions between fresh and salt waters, and the effects of fluctuating sea level during the Quaternary. The case studies include a review of syngenetic karst in coastal dune limestones, Australia (S.White, 5.1.1) and an example of speleogenesis on tectonically active carbonate islands (Gunn and Lowe, 5.1.2). Klimchouk in Chapter 5.2 reviews conditions and mechanisms of speleogenesis in deep-seated and confined settings, one of the most controversial but exciting topics in modern cave research. Conventional karst/speleogenetic theories are concerned chiefly with shallow, unconfined geologic settings, supposing that the karstification found there is intimately related to surface conditions of input and output, with the dissolution being driven by downward meteoric water recharge. The possibility of hypogenic karstification in deeper environments has been neglected for a long time, and the quite numerous instances of karst features found at significant depths have usually been interpreted as buried paleokarst. However, the last decade has seen a growing recognition of the variety and importance of hypogene dissolution processes and of speleogenesis under confined settings which often precedes unconfined development (Hill, 1987, 1995; Klimchouk, 1994, 1996, 1997; Lowe, 1992; Lowe & Gunn, 1995; Mazzullo & Harris, 1991, 1992; Palmer, 1991, 1995; Smart & Whitaker, 1991; Worthington, 1991, 1994; Worthington & Ford, 1995). Confined (artesian) settings were commonly ignored as sites for cave origin because the classic concept of artesian flow implies long lateral travel distances for groundwater within a soluble unit, resulting in a low capacity to generate caves in the confined area. However, the recognition of non-classical features in artesian flow, namely the occurrence of cross-formation hydraulic communication within artesian basins, the concepts of transverse speleogenesis and of the inversion of hydrogeologic function of beds in a sequence, allows for a revision of the theory of artesian speleogenesis and of views on the origin of many caves. It is proposed that artesian speleogenesis is immensely important to speleo-inception and also accounts for the development of some of the largest known caves in the world. Typical conditions of recharge, the flow pattern through the soluble rocks, and groundwater aggressiveness favor uniform, rather than competing, development of conduits, resulting in maze caves where the structural prerequisites exist. Cross-formational flow favors a variety of dissolution mechanisms that commonly involve mixing. Hydrogeochemical mechanisms of speleogenesis are particularly diverse and potent where carbonate and sulfate beds alternate and within or adjacent to hydrocarbon-bearing sedimentary basins. Hypogene speleogenesis occurs in rocks of varied lithology and can involve a variety of dissolution mechanisms that operate under different physical constraints but create similar cave features. Case studies include the great gypsum mazes of the Western Ukraine (Klimchouk, Section 5.2.1), great maze caves in limestones in Black Hills, South Dakota (Palmer, Section 5.2.2) and Siberia (Filippov, Section 5.2.3), karstification in the Redwall aquifer, Arizona (Huntoon, Section 5.2.4), hydrothermal caves in Hungary (Y.Dublyansky, Section 5.2.6), and sulfuric acid speleogenesis (Lowe, Bottrell and Gunn, Section 5.2.7, and Hill, Section 5.2.8). Y.Dublyansky summarizes the peculiar features of hydrothermal speleogenesis (Section 5.2.5), and V.Dublyansky describes an outstanding example of a hydrothermal cavity, in fact the largest ever recorded by volume, in the Rhodope Mountains (Section 5.2.9). Recognition of the scale and importance of deep-seated speleogenesis and of the hydraulic continuity and cross-formational communications between aquifers in artesian basins is indispensable for the correct interpretation of evolution of karst aquifers, speleogenetic processes and associated phenomena, regional karst water-resource evaluations, and the genesis of certain karst-related mineral deposits. These and other theoretical and practical implications still have to be developed and evaluated, which offers a wide field for further research efforts. Ford in Chapter 5.3 reviews theory of speleogenesis that occurs where normal meteoric waters sink underground through the epikarst or dolines and stream sinks, etc. and circulate in the limestone or other soluble rocks without any major artesian confinement. These are termed common caves (Ford & Williams, 1989) because they probably account for 90% or more of the explored and mapped dissolutional caves that are longer than a few hundred meters. This estimate reflects the bias in exploration; caves formed in unconfined settings and genetically related to surface recharge are the most readily accessible and hence form the bulk of documented caves. Common caves display chiefly the branchwork forms where the dissolutional conduits occupy only a tiny proportion of the total length or area of penetrable fissures that is available to the groundwaters. The rules that govern the selection of the successful linkages that will be enlarged into the branchwork pattern are supported in the models presented in Chapter 4.2. In the long section caves may be divided into deep phreatic, multi-loop, mixed loop and water table, and ideal water table types, with drawdown vadose caves or invasion vadose caves above them. Many large systems display a mixture of the types. The concepts of plan pattern construction, phreatic, water table or vadose state, and multi-phase development of common caves are illustrated in the case studies that follow the introduction. They are organized broadly to begin with examples of comparatively simple deep phreatic and multi-loop systems (El Abra, Mexico, Ford, Section 5.3.1 and Castleguard Cave, Canada, Ford, Lauritzen and Worthington, Section 5.3.2), proceeding to large and complex multi-phase systems such as the North of Thun System, Switzerland (Jeannin, Bitterly and Hauselmann, Section 5.3.3) and Mammoth Cave, Kentucky (Palmer, Section 5.3.8), to representatives of mixed vadose and phreatic development in mountainous regions (the Alps, Audra, Section 5.3.4; the Pyrenees, Fernandez, Calaforra and Rossi, Section 5.3.5; Mexico, Hose, Section 5.3.6) and where there is strong lithologic or structural control (Folded Appalachians, W.White, Section 5.3.7; gypsum caves in the South of Spain, Calaforra and Pulido-Bosch, Section 5.3.10). Two special topics are considered by W.White in Section 5.3.9 (Speleogenesis of vertical shafts in the eastern US) and Palmer (Maze origin by diffuse recharge through overlying formation). The set concludes with two instances of nearly ideal water table cave development (in Belize and Hungary, Ford, Section 5.3.12), and a review of the latest models of speleogenesis from the region where modern karst studies in the West began, the Classical Karst of Slovenia and Trieste (?u?ter?ic, Section 5.3.13). In Parts 2-5 attention is directed primarily on how the gross geometry of a cave system is established. Part 6 switches focus to the forms at meso- and micro- scales, which can be created during enlargement of the cave. Lauritzen and Lundberg in Chapter 6.1 summarize the great variety of erosional forms ( speleogenetic facies ) that can be created by a wide range of speleogenetic agents operating in the phreatic or vadose zones. Some forms of cave passages have been subject to intensive research and may be interpreted by means of simple physical and chemical principles, but many others are polygenetic and hence difficult to decipher with certainty. However, in addition to the analysis of cave patterns (see Chapter 3.4), each morphological element is a potential tool that can aid our inferences on the origin of caves and on major characteristics of respective past hydrogeological settings. In Chapter 6.2 E.White and W.White review breakdown morphology in caves, generalizing that the processes are most active during the enlargement and decay phases of cave development. Early in the process breakdown occurs when the flow regime shifts from pipe-full conditions to open channel conditions (i.e. when the roof first loses buoyant support) and later in the process breakdown becomes part of the overall degradation of the karst system. The chapter addresses the mechanism of breakdown formation, the geological triggers that initiate breakdown, and the role that breakdown plays in the development of caves. As the great majority of both theoretical considerations and case studies in this book deal with speleogenesis in carbonate rocks, it is useful to provide a special forum to examine dissolution cave genesis in other rocks. This is the goal of Part 7. Klimchouk (7.1) provides a review of speleogenesis in gypsum. This appears to be a useful playground for testing the validity and limitations of certain general speleogenetic concepts. Differences in solution kinetics between gypsum and calcite impose some limitations and peculiar features on the early evolution of conduits in gypsum. These peculiarities appear to be an extreme and more obvious illustration of some rules of speleogenetic development devised from conceptual and digital modeling of early conduit growth in limestones. For instance, it is shown (e.g. Palmer, 1984, 1991; Dreybrodt, 1996; see also Chapter 3.4 and Section 4.2.2) that initiation of early, narrow and long pathways does not seem feasible under linear dissolution rate laws (n=1) due to exponential decrease of the dissolution rates. Although the dissolution kinetics of gypsum are not well known close to equilibrium it is generally assumed that they are controlled entirely by diffusion and therefore linear. If dissolution of gypsum is solely diffusion-controlled, with no change in the kinetic order, conduit initiation could not occur in phreatic settings or by lateral flow through gypsum from distant recharge areas in artesian settings. Hence, the fact that maze caves are common in gypsum in artesian conditions (see Section 5.2.1) gives strong support to a general model of "transverse" artesian speleogenesis where gypsum beds are underlain by, or sandwiched between, insoluble or low-solubility aquifers (Chapter 5.2), and suggests that it may be applicable to cave development in carbonates. In unconfined settings, speleogenesis in gypsum occurs along fissures wide enough to support undersaturated flow throughout their length. Linear or crudely branching caves overwhelmingly predominate, which rapidly adjust to the contemporary geomorphic setting and to the maximum available recharge. Also, if considerable conduit porosity has been created in deep-seated settings, it provides ready paths for more intense groundwater circulation and further cave development when uplift brings the gypsum into the shallow subsurface. Speleogenesis in salt, reviewed in general and exemplified by the Monte Sedom case in Israel (Frumkin, Chapter 7.2), has been documented only in open, unconfined settings, where it provides a model for simple vadose cave development. Chapter 7.3 deals with speleogenesis in quartzites, illustrated by case studies from southeastern Minas Gerais, Brasil (Correa Neto, 7.3.1) and South Africa (Martini, 7.3.2). The process involves initial chemical weathering of the quartzite to create zones of friable rocks (sanding, or arenisation) which then are removed by piping, with further conduit enlargement due to mechanical erosion by flowing water. Part 8 combines the theoretical with some applied aspects of speleogenetic studies. Worthington, Ford and Beddows (8.1) show the important implications of what might be termed "speleogenetic wisdom" when studying ground water behaviour in karst. They examine some standard hydrogeological concepts in the light of knowledge of caves and their patterns, considering a range of case studies to identify the characteristic enhancement of porosity and permeability due to speleogenesis that occurs in carbonate rocks. The chapter focuses on unconfined carbonate aquifers as these are the most studied from the speleological perspective and most important for water supplies. Four aquifers, differing in rock type, recharge type (allogenic and autogenic), and age (Paleozoic, Mesozoic and Cenozoic), are described in detail to demonstrate the extent of dissolutional enhancement of porosity and permeability. It is shown that all four cases are similar in hydraulic function, despite the fact that some of them were previously characterized as different end members of a "karst ? non-karst" spectrum. Enhancement of porosity by dissolution is relatively minor: enhancement of permeability is considerable because dissolution has created dendritic networks of channels able to convey 94% or more of all flow in the aquifer, with fractures providing a small proportion and the matrix a negligible amount. These conclusions may be viewed as a warning to hydrogeologists working in carbonate terranes: probably the majority of unconfined aquifers function in a similar manner. Sampling is a major problem in their analysis because boreholes (the conventional exploration tool in hydrogeology) are unlikely to intersect the major channels that are conveying most of the flow and any contaminants in it. It is estimated, using examples of comprehensively mapped caves, that the probability of a borehole intersecting a conduit ranges from 1 in 50 to 1 in 1000 or more. Boreholes simply cannot be relied upon to detect the presence of caves or to ?characterise? the hydrologic functioning of cavernous aquifers. Wherever comprehensive evidence has been collected in unconfined carbonate aquifers (cave mapping plus boreholes plus lab analysis of core samples) it suggests that dissolution inexorably results in a similar structure, with channel networks providing most of the permeability of the aquifer, yet occupying a very minor fraction of its volume (Worthington, Ford and Beddows). Lowe (Chapter 8.2) focuses on developments in understanding the vital role played by karstic porosity, (broadly viewed as being the product of speleogenesis), in the migration of mineralizing fluids (or hydrocarbons) and in their deposition (or storage), and comments on the potential role of new speleogenetic concepts in developing greater understanding in the future. Although some early workers were clearly aware of actual evidence for some kind of relationship, and others noted its theoretical likelihood, it has been ignored by many until relatively recent times. This shortfall has gradually been redressed; new understanding of the extent and variety of karst processes is ensuring that new relationships are being recognized and new interpretations and models are being derived. The chapter does not pretend to give a comprehensive account of the topic but clearly demonstrates the wide applicability of speleogenetic knowledge to issues in economic geology. In Chapter 8.3 Aley provides an overview of the water and land-use problems that occur in areas with conduit aquifers. He stresses that sound land management must be premised on an understanding that karst is a three-dimensional landscape where the surface and subsurface are intimately and integrally connected. Failure to recognize that activity at the surface affects the subsurface, and the converse, has long been the root cause of many of the problems of water and land use in karst regions. Karst areas have unique natural resource problems, whose management can have major economic consequences. Although there is an extensive literature on the nature of particular problems, resource protection and hazard minimization strategies in karst, it rarely displays an advanced understanding of the processes of the conduit formation and their characteristics yet these will always be involved. This book does not pretend to be a definitive text on speleogenesis. However, it is hoped that readers will find it to be a valuable reference source, that it will stimulate new ideas and approaches to develop and resolve some of the remaining problems, and that it will promote an appreciation of the importance of speleogenetic studies in karst hydrogeology and applied environmental sciences. Acknowledgements: We sincerely thank all contributors for their willing cooperation in the long and difficult process of preparing this book, for their participation in developing its logic and methodology and their cheerful response to numerous requests. We thank all colleagues who discussed the work with us and encouraged it in many ways, even though not contributing to its content as authors. We are particularly grateful to Margaret Palmer for invaluable help in editing the English in many contributions, to Nataly Yablokova for her help in performing many technical tasks and to Elizabeth White who prepared comprehensive index. Our thanks are due to Dr. David Drew, Dr. Philip LaMoreaux, Dr. George Moore and Prof. Marian Pulina for reviewing the manuscript and producing constructive notes and comments on improvement of the final product. The organizational costs and correspondence related to the preparation of the book were partially sponsored by the National Speleological Society, the publisher. We thank David McClurg, the Chair of the NSS Special Publication Committee, for his extensive technical and organizational support in the preparation and publishing processes.

Caves below collapse dolines - case study of Tisova Jama (Eastern Serbia), 2000, Ć, Alić, Ljubojević, Jelena, Ljubojević, Vladimir

The cave Tisova Jama (-235 m) is located on Beljanica Mountain (Carpatho-Balkanides, Eastern Serbia). Its entrance pit is situated at the bottom of a great collapse doline (dimensions 180 ¥ 160 m), below which there is a chamber with the greatest surface (11 374 m2) and volume (approx. 170 000 m3) so far known among Serbian caves. Such dimensions can be explained by the presence of a strong underground stream in the unreachable part of the cave. Removal of the material disrupts the stability of the rock below the doline, which leads to breakdown and deepening of the doline.


Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy), 2001, Huang Yiming, Fairchild Ian J. , Borsato Andrea, Frisia Silvia, Cassidy Nigel J. , Mcdermott Frank, Hawkesworth Chris J. ,
Sub-annual variations in trace element chemistry and luminescence have recently been demonstrated from speleothems and offer the potential of high-resolution palaeoclimatic proxies. However, no studies have yet examined microscopic trace element variations in relation to modern cave conditions. In this study, the spatial variations in trace element (Sr, Mg and P) concentrations in speleothems (a stalagmite and a soda straw stalactite) from the alpine Ernesto cave (temperature 6.60.1[deg]C) in a forested catchment in NE Italy have been studied using secondary ion mass spectrometry (SIMS) and compared with environmental parameters and waters in the modern cave. An annual lamination exists in the stalagmite and soda straw stalactite in the form of clear calcite with narrow visible layers, which are UV-fluorescent and interpreted to contain soil-derived humic/fulvic acids washed into the cave during autumn rains. Microanalyses were undertaken of seven annual laminae, probably deposited during the 1960s in the stalagmite, and seven laminae in the 1990s for the stalactite.The analysis results show that Sr consistently has a trough and P, a peak centred on the inclusion-rich layer. Mg shows mainly a negative covariation with Sr in laminae formed in the 1990s, but a positive covariation in the stalagmite formed in 1960s. The spatial scale of the main geochemical variations is the same as that of annual laminae of inclusion-poor and inclusion-rich couplets. Mass balance arguments are used to show that the P is inorganic in form and presumably occurs as individual phosphate ions within the calcite.Most drip waters show limited chemical variations, but a summer peak in trace elements in 1995 and a decrease in Mg/Ca in the following winter are notable. More pronounced covariations in Mg/Ca and Sr/Ca are shown by a site with highly variable drip rates where ratios increase at slow drip rates. The strongest seasonal variations are found in pool waters, where ratios increase reflecting significant Ca removal from the water into the calcite during the winter in response to seasonal PCO2 variations in cave air. Thus, the cave waters' compositions tend to reflect climate conditions, such that Mg/Ca and Sr/Ca are tentatively interpreted to be higher when climate conditions are dry.Combining results from the speleothems and cave water along with the behaviour of each trace species, Mg/Ca variations in the speleothems are considered to reflect their variation in the cave waters, whereas, Sr incorporation is also dependent on precipitation rate, in this case, mainly controlled by temporal variations in PCO2 in the cave (and conceivably, also by inhibitors such as phosphate). P adsorption (a fraction of which is subsequently incorporated within calcite) depends on aqueous phosphate concentration and water flux, both of which should increase during the autumn. Therefore, multiple trace element profiles in speleothems reflect multiple aspects of environment seasonality and conditions, and hence, a calibration against weather records is desirable to establish their palaeoclimatological meaning. The strong annual variation of trace elements, and particularly P, can provide chronological markers for high-resolution studies of other climate proxies, such as stable isotopes

Results 16 to 30 of 84
You probably didn't submit anything to search for