Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That storativity is see storage coefficient.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for stable isotopes (Keyword) returned 94 results for the whole karstbase:
Showing 16 to 30 of 94
A stable isotope investigation of the Classical Karst aquifer: evaluating karst groundwater components for water quality preservation, 2000, Doctor Daniel H. , Lojen Sonja, Horvat Milena

The karst aquifer resurgence zone that is located along the western border of the Classical Karst region of southwestern Slovenia and to the north of Trieste, Italy is comprised of several distinct groundwater components. The purpose of this ongoing study is to examine the varying influence of these groundwater components on the karstic outflow under changing hydrologic conditions, using natural stable isotopes as tracers. In particular, the influence of the Soča river on the groundwater of this region was examined using mercury, a pollutant of elevated concentration in the Soča, as an additional tracer of Soča river water. The results of the isotopic measurements confirm the division of karstic groundwaters into three main categories: (1) springs and the estavelles of an ephemeral karstic lake (Sablici springs, Moschenizze North spring, Doberdò Lake), which are largely influenced by the Soča and Vipava rivers during periods of low flow, (2) the group of the Timavo springs that is subject to main influences of the Reka River and water derived from local precipitation, and (3) the grouping of Sardos spring and Moschenizze South spring, which form an intermediate category between the first two groups, exhibiting characteristics that indicate variable contributions from the other two end-members. Mercury levels in these karstic groundwaters are generally quite low, however significant variablity in mercury levels with varying hydrologic conditions have been observed, indicating also a varying influence of the Soča river.

Investigation of groundwater infiltration to seawater in Punat Bay, Croatia, by measurements of conductivity and stable isotopes in water, 2000, Horvatinć, Ić, N. , Groening M. , Mikulić, N. , Obhođ, Aš, J. , Valković, V.

Locations of freshwater infiltration from the coast to the seawater of the Punat Bay were determined based upon the distribution of conductivity and hydrogen (2H/1H) and oxygen (18O/16O) stable isotope signatures of the seawater. Seawater samples in Punat Bay were measured and collected in three seasons: summer (25 sites), autumn (12 sites) and winter (20 sites). Freshwater samples from 7 springs and 2 accumulations on Krk Island were also collected. The position of each sampling site was determined by GPS. Conductivity, salinity, temperature and pH were measured in situ. Higher freshwater input was defined on the east and north coast of Punat Bay in the summer and winter seasons, and on the north coast in autumn. Stable isotope composition of freshwater from springs on Krk Island indicated fast circulation of groundwater, particularly in the wet winter season.

Geochemical study of calcite veins in the Silurian and Devonian of the Barrandian Basin (Czech Republic): evidence for widespread post-Variscan fluid flow in the central part of the Bohemian Massif, 2000, Suchy V. , Heijlen W. , Sykorova I. , Muchez Ph. , Dobes P. , Hladikova J. , Jackova I. , Safanda J. , Zeman A.

Carbonate fracture cements in limestones have been investigated by fluid inclusion and stable isotope analysis to provide insight into fluid evolution and deformation conditions of the Barrandian Basin (Silurian–Devonian) of the Czech Republic. The fractures strike generally north–south and appear to postdate major Variscan deformation. The most common fracture cement is calcite that is locally accompanied by quartz, natural bitumen, dolomite, Mn-oxides and fluorite. Three successive generations of fracture-filling calcite cements are distinguished based on their petrographical and geochemical characteristics. The oldest calcite cements (Stage 1) are moderate to dull brown cathodoluminescent, Fe-rich and exhibit intense cleavage, subgrain development and other features characteristic of tectonic deformation. Less tectonically deformed, variable luminescent Fe-poor calcite corresponds to a paragenetically younger Stage 2 cement. First melting temperatures, Te, of two-phase aqueous inclusions in Stages 1 and 2 calcites are often around 2208C, suggesting that precipitation of the cements occurred from H2O–NaCl fluids. The melting temperature, Tm, has values between 0 and 25.88C, corresponding to a low salinity between 0 and 8.9 eq. wt% NaCl. Homogenization temperatures, Th, from calcite cements are interpreted to indicate precipitation at about 708C or less. No distinction could be made between the calcite of Stages 1 and 2 based on their fluid inclusion characteristics. In some Stage 2 cements, inclusions of highly saline (up to 23 eq. wt% NaCl) brines appear to coexist with low-salinity inclusions. The low salinity fluid possibly contains Na-, K-, Mg- and Ca-chlorides. The high salinity fluid has a H2O–NaCl–CaCl2 composition. Blue-to-yellow-green fluorescing hydrocarbon inclusions composed of medium to higher API gravity oils are also identified in some Stages 1 and 2 calcite cements. Stage 1 and 2 calcites have d 18O values between 213.2‰ and 27.2‰ PDB. The lower range of the calculated d 18O values of the ambient fluids (23.5‰ to 1 2.7‰ SMOW) indicate precipitation of these cements from deeply circulating meteoric waters. The presence of petroleum hydrocarbon inclusions in some samples is interpreted to reflect partial mixing with deeper basinal fluids. The paragenetically youngest Stage 3 calcite cement has only been encountered in a fewveins.These calcites are characterised by an intensely zoned luminescence pattern, with bright yellow and non-luminescent zones. Inclusions of Mn-oxides and siliceous sinters are commonly associated with Stage 3 calcite, which is interpreted to have precipitated from shallower meteoric waters. Regional structural analysis revealed that the calcite veins of the Barrandian basin belong to a large-scale system of north–south-trending lineaments that run through the territory of the Czech Republic. The veins probably reflect episodes of fluid migration that occurred along these lineaments during late stages of the Variscan orogeny

Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy), 2001, Huang Yiming, Fairchild Ian J. , Borsato Andrea, Frisia Silvia, Cassidy Nigel J. , Mcdermott Frank, Hawkesworth Chris J. ,
Sub-annual variations in trace element chemistry and luminescence have recently been demonstrated from speleothems and offer the potential of high-resolution palaeoclimatic proxies. However, no studies have yet examined microscopic trace element variations in relation to modern cave conditions. In this study, the spatial variations in trace element (Sr, Mg and P) concentrations in speleothems (a stalagmite and a soda straw stalactite) from the alpine Ernesto cave (temperature 6.60.1[deg]C) in a forested catchment in NE Italy have been studied using secondary ion mass spectrometry (SIMS) and compared with environmental parameters and waters in the modern cave. An annual lamination exists in the stalagmite and soda straw stalactite in the form of clear calcite with narrow visible layers, which are UV-fluorescent and interpreted to contain soil-derived humic/fulvic acids washed into the cave during autumn rains. Microanalyses were undertaken of seven annual laminae, probably deposited during the 1960s in the stalagmite, and seven laminae in the 1990s for the stalactite.The analysis results show that Sr consistently has a trough and P, a peak centred on the inclusion-rich layer. Mg shows mainly a negative covariation with Sr in laminae formed in the 1990s, but a positive covariation in the stalagmite formed in 1960s. The spatial scale of the main geochemical variations is the same as that of annual laminae of inclusion-poor and inclusion-rich couplets. Mass balance arguments are used to show that the P is inorganic in form and presumably occurs as individual phosphate ions within the calcite.Most drip waters show limited chemical variations, but a summer peak in trace elements in 1995 and a decrease in Mg/Ca in the following winter are notable. More pronounced covariations in Mg/Ca and Sr/Ca are shown by a site with highly variable drip rates where ratios increase at slow drip rates. The strongest seasonal variations are found in pool waters, where ratios increase reflecting significant Ca removal from the water into the calcite during the winter in response to seasonal PCO2 variations in cave air. Thus, the cave waters' compositions tend to reflect climate conditions, such that Mg/Ca and Sr/Ca are tentatively interpreted to be higher when climate conditions are dry.Combining results from the speleothems and cave water along with the behaviour of each trace species, Mg/Ca variations in the speleothems are considered to reflect their variation in the cave waters, whereas, Sr incorporation is also dependent on precipitation rate, in this case, mainly controlled by temporal variations in PCO2 in the cave (and conceivably, also by inhibitors such as phosphate). P adsorption (a fraction of which is subsequently incorporated within calcite) depends on aqueous phosphate concentration and water flux, both of which should increase during the autumn. Therefore, multiple trace element profiles in speleothems reflect multiple aspects of environment seasonality and conditions, and hence, a calibration against weather records is desirable to establish their palaeoclimatological meaning. The strong annual variation of trace elements, and particularly P, can provide chronological markers for high-resolution studies of other climate proxies, such as stable isotopes

A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers, 2001, Lee E. S. , Krothe N. C. ,
The study area lies in a highly karstified carbonate terrain in south central Indiana. Sinkholes, conduits, and caves form large secondary pathways for the subsurface flow. As a result, the discharge from a main emergence point for the subsurface flow system, the Orangeville Rise, quickly responds to the storm events and shows wide variations in flow rate, water chemistry, and stable isotopic compositions. These responses are attributed to the mixing of water in secondary pathways. In the study area, recharge occurs through the thick, mantled karst plain and the sinkhole plains, and the role of soil layer and epikarst in the recharge process is of great importance. Rain (DIC: 2 HCO3- mg/l, delta C-13 (DIC): - 7%o) soil water (DIC: 544 HCO3- mg/l, delta C-13(DIC): - 14.7%o), epikarstic water (DIC: 224 HCO3- mg/l delta C-13(DIC): - 13.6%o), and phreatic diffuse flow water (DIC: 299 HCO3- mg/l, delta C-13(DIC): - 11.8%o) generally showed unique and constant dissolved inorganic carbon (DIC) and delta C-13(DIC) values over time. Using DIC and delta C-13(DIC) as tracers, a four-component mixing model was established for the karstic flow system. By constructing the discharge hydrograph separation curves, the mixing ratio of each component, rain (10.6%), soil (3.1%), epikarstic (52.3%), and phreatic (34.0%) water, was determined for the Orangeville Rise discharge over the testing period of 104 h after the storm event of 10/4/90. Vadose water occupied 55.4% of spring discharge and this demonstrates the importance of the unsaturated zone, especially the epikarst, in the karstic flow systems. (C) 2001 Elsevier Science B.V. All rights reserved

Stable isotope stratigraphy of Holocene speleothems: examples from a cave system in Rana, northern Norway, 2001, Linge H. , Lauritzen S. E. , Lundberg J. , Berstad I. M. ,
High-precision TIMS U-series dates and continuous stable oxygen and carbon isotope profiles of a 4000 year stalagmite record from Rana, northern Norway, are presented and compared with data from two other speleothems from the same cave. The dating results yield ages from 387534 to 2963 years before AD2000, with 2[sigma] errors from 0.5 to 1%. The overall growth rate is 35 mm/ka, corresponding to a temporal resolution of 29 years/mm. The stalagmite is tested for isotopic equilibrium conditions, where all `Hendy' tests, except one, indicate isotopic equilibrium or quasi equilibrium deposition. Both the stable oxygen and carbon isotope records reveal a strong and abrupt enrichment in the near-top measurements. This corresponds in time to the opening of a second cave entrance in the late 1960s, which caused changes in the cave air circulation. The stable oxygen isotope signal is enriched compared to the modern value over the last 300 years, indicating a negative response to temperature changes. Likewise, the stable carbon isotope record is enriched in this period. However, both of the stable isotope records are shown to be significantly enriched compared to the isotope ranges displayed by other stalagmites in the same cave, and this questions the reliability of the proxy records derived from the presented stalagmite. Still, a general good correspondence of large scale fluctuations is found between the three stable oxygen isotope records from this cave. The stable carbon isotope records show large variations within the cave and are believed to be governed by soil-zone conditions, percolation pathways and possibly driprates

Geochemical methods for distinguishing surface water from groundwater in the Knox Aquifer System, 2002, Redwine J. C. , Howell J. R. ,
The Knox Group, a thick package of Cambro-Ordovician rocks, occurs over a wide geographic area in the southeastern US. Characteristics of the Knox Group include strong structural control on porosity and permeability, deep near-vertical solution features, great depth of water circulation, dolomite, as well as limestone, hosting the karstic features, and extreme anistropy and heterogeneity. In this study, geochemical methods were used to distinguish ambient groundwater, in the Knox aquifer from surface water, specifically, water leaking from the Logan Martin resevoir in east-central Alabama. Major cations and anions, as well as stable isotopes of hydrogen and oxygen, were used to distinguish lake water from groundwater, and to determine mixed waters. Lake water and groundwater components for mixed waters were calculated, and mapped in plan view. A relatively narrow zone of mixing occurs in the vicinity of Logan Martin dam in map view, which is consistent with the hydrogological conceptual model of deep near-vertical solution-widened fractures (fissures), oriented east-norteast and to a lesser extent north-west, in a much less permeable dolomite matrix

Using stable isotope analysis (delta D-delta O-18) to characterise the regional hydrology of the Sierra de Gador, south east Spain, 2002, Vandenschrick G. , Van Wesemael B. , Frot E. , Pulidobosch A. , Molina L. , Stievenard M. , Souchez R. ,
Water stress is rapidly increasing in many Mediterranean coastal zones mainly due to expansion in agriculture and tourism. In this paper, we focus on the Sierra de Gador-Campo de Dalias aquifer system (southeastern Spain) in order to assess the capability of water stable isotope analysis (deltaD-delta(18)O) to refine the understanding on recharge of this karstic aquifer system. Different types of surface and groundwater were sampled along an altitudinal gradient from the recharge zone in the mountains to the coastal plain. Surface water is restricted to local runoff, collected in closed reservoirs. Runoff amounts, collected in three of these reservoirs were monitored together with the precipitation in their catchments. Meteorological maps were used to detect the origin of the precipitation generating the majority of the runoff. The results were compared to literature data on local and regional precipitation. The use of oxygen and hydrogen isotopic composition has proved to be a useful tool to explain the origin of groundwater in a Mediterranean karstic system. Such studies are, however, not numerous and are often limited to local scale recharge for fast-reacting systems. This paper focuses on the delta(18)O-deltaD relationships of local precipitation to explain the isotopic variability of a large karstic aquifer system. The isotopic compositions of groundwater sampled along an altitudinal gradient from the recharge zone to the coastal plain are well displayed, in a deltaD-delta(18)O diagram, on a mixing line connecting a pole of Mediterranean waters to a pole of Atlantic waters. The Atlantic signature predominates in the shallow groundwater of natural springs, reflecting the rainfall which produced the local runoff sampled. The Mediterranean signature is mainly restricted to deep groundwater from boreholes in the coastal plain. The existence of a degree of spatial separation of groundwater types demonstrates that groundwater flow in a complex karstic system is not always continuous. The Mediterranean signature of deep groundwater could be due to past extreme rainfall events during which connectivity between recharge and reservoir exists, while at the same time the Atlantic signature of recent winter rains dominates in shallow groundwater. The assumption that an equilibrium in isotopic composition is established within a continuous aquifer and that therefore a slope lower than 8 in a deltaD-delta(18)O diagram indicates evaporation is not necessarily valid.

Last glacial-Holocene paleoceanography of the Black Sea and Marmara Sea: stable isotopic, foraminiferal and coccolith evidence, 2002, Aksu Ae, Hiscott Rn, Kaminski Ma, Mudie Pj, Gillespie H, Abrajano T, Yasar D,
Multi-proxy data and radiocarbon dates from several key cores from the Black Sea and Marmara Sea document a complex paleoceanographic history for the last ~30[punctuation space]000 yr. The Marmara Sea was isolated from both the Black Sea and the Aegean Sea during glacial periods when global sea-level lowering subaerially exposed the shallow sills at the Straits of Bosphorus and Dardanelles (i.e. lake stage), and reconnected through both straits during interglacial periods, when rise of global sea level breached the shallow sills (i.e. gateway stage). Micropaleontological data show that during the `lake stage' the surface-water masses in both the Marmara Sea and Black Sea became notably brackish; however, during the `gateway stages' there was a low-salinity surface layer and normal marine water mass beneath. Two sapropel layers are identified in the Marmara Sea cores: sapropels M2 and M1 were deposited between ~29.5 and 23.5 ka, and ~10.5 and 6.0 ka, respectively. Micropaleontological and stable isotopic data show that the surface-water salinities were reduced considerably during the deposition of both sapropel layers M2 and M1, and calculation using planktonic foraminiferal transfer functions shows that sea-surface temperatures were notably lower during these intervals. The presence of fauna and flora with Black Sea affinities and the absence of Mediterranean fauna and flora in sapropels M1 and M2 strongly suggest that communication existed with the Black Sea during these times. A benthic foraminiferal oxygen index shows that the onset of suboxic conditions in the Marmara Sea rapidly followed the establishment of fully marine conditions at ~11-10.5 ka, and are attributed to Black Sea outflow into the Marmara Sea since 10.5 ka. These suboxic conditions have persisted to the present. The data discussed in this paper are completely at odds with the `Flood Hypothesis' of Ryan et al. (1997), and Ryan and Pitman (1999)

Constraints on Black Sea outflow to the Sea of Marmara during the last glacial-interglacial transition, 2002, Major Candace, Ryan William, Lericolais Gilles, Hajdas Irka,
New cores from the upper continental slope off Romania in the western Black Sea provide a continuous, high-resolution record of sedimentation rates, clay mineralogy, calcium carbonate content, and stable isotopes of oxygen and carbon over the last 20[punctuation space]000 yr in the western Black Sea. These records all indicate major changes occurring at 15[punctuation space]000, 12[punctuation space]800, 8400, and 7100 yr before present. These results are interpreted to reflect an evolving balance between water supplied by melting glacial ice and other river runoff and water removed by evaporation and outflow. The marked retreat of the Fennoscandian and Alpine ice between 15[punctuation space]000 and 14[punctuation space]000 yr is recorded by an increase in clays indicative of northern provenance in Black Sea sediments. A short return toward glacial values in all the measured series occurs during the Younger Dryas cold period. The timing of the first marine inflow to the Black Sea is dependent on the sill depths of the Bosporus and Dardanelles channels. The depth of the latter is known to be -805 m, which is consistent with first evidence of marine inundation in the Sea of Marmara around 12[punctuation space]000 yr. The bedrock gorge of the Bosporus reaches depths in excess of -100 m (relative to present sea level), though it is now filled with sediments to depths as shallow as -32 m. Two scenarios are developed for the connection of the Black Sea with the Sea of Marmara. One is based on a deep Bosporus sill depth (effectively equivalent to the Dardanelles), and the other is based on a shallow Bosporus sill (less than -35 m). In the deep sill scenario the Black Sea's surface rises in tandem with the Sea of Marmara once the latter connected with the Aegean Sea, and Black Sea outflow remains continuous with inflowing marine water gradually displacing the freshwater in the deep basin. The increase in the [delta]18O of mollusk shells at 12[punctuation space]800 yr and the simultaneous appearance of inorganic calcite with low [delta]18O is compatible with such an early marine water influx causing periodic weak stratification of the water column. In the shallow sill scenario the Black Sea level is decoupled from world sea level and experiences rise and fall depending on the regional water budget until water from the rising Sea of Marmara breaches the shallow sill. In this case the oxygen isotope trend and the inorganic calcite precipitation is caused by increased evaporation in the basin, and the other changes in sediment properties reflect climate-driven river runoff variations within the Black Sea watershed. The presence of saline ponds on the Black Sea shelf circa 9600 yr support such evaporative draw-down, but a sensitive geochemical indicator of marine water, one that is not subject to temperature, salinity, or biological fractionation, is required to resolve whether the sill was deep or shallow

Limestone wall retreat in a ceiling cupola controlled by hydrothermal degassing with wall condensation (Szunyogh model) (Comments to Wolfgang Dreybrodt remark ''On feasibility of condensation processes in caves'', Speleogenesis and Evolution of Karst Aqui, 2003, Lismonde, B.

Audra, Bigot and Mocochain (2003) proposed an explanation for the development of a hydrothermal cave in Provence ( France ), referring to the Szunyogh model (1989). Dreybrodt (2003) then shows by calculations that this model is unlikely. We will discuss Dreybrodt's answer here. Our conclusions will emphasise that Dreybrodt's hypothesis (transient conduction in a semi-infinite solid) is not the only possibility. When other conditions are considered (steady-state conduction with constant temperature at a finite distance), this cupola-development model can be valid.

The mechanism of wall retreat by corrosion linked to CO 2 degassing and water condensation is only possible providing the existence of a seepage flow close to the hydrothermal flow, which can maintain a sufficient thermal gradient over time.
The validity of Szunyogh's theory under these conditions has already been mentioned (Lismonde 2002, p. 292). Such a process also occurs in Movile cave ( Romania ), with values one order of magnitude lower as in our calculation. Condensation corrosion was demonstrated here using stable isotopes (Sarbu and Lascu 2001)

Analysis of karst tufa from Guangxi, China, 2003, Franciskovicbilinski S, Bilinski H, Barisic D, Horvatincic N, Yuan Dx,
The paper presents an analysis of characteristic karst tufa from Guangxi, China, which has not been studied before. A comparison with tufa from Dinaric Karst of Croatia is discussed in view of the C-type climate. The major mineral is calcite. Minor minerals are quartz and dolomite, depending on location. The content of calcium carbonate varies from 65% to 92%, and that of magnesium carbonate from 0.03% to 1.77%. Among other elements, the most abundant are Fe, from 0.02% to 1.50%, and Ti, from 0.15% to 0.27%. Many other trace elements (V, Cr, Mn, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Y, Zr, Hg and Pb) are also present. Specific activity of radionuclides K-40, Th-232, Cs-137, Ra-226 and U-238 varies from sample to sample. Concentration of U in tufa is close to that reported for sedimentary carbonate. Low concentration Of Cs-137 indicates that this part of the world was not exposed to nuclear explosions. The concentration of Ra-226 is the highest in Mashan County. The ratio U-238/Ra-226 (0.21-0.71) in tufa from Mashan County is significantly lower than the theoretical value of 1. In 5 of the 11 studied samples, stable isotopes delta(13)C and delta(18)O were analyzed. They were dated by means of the C-14 method. One tufa sample originated in the Pleistocene and the others in the Holocene. Because all of the tufa samples contain traces of Na and K, and K < Na, the tufa from Guangxi belong to the CO2-outgassing 'N' type according to the classification of Liu and He (1994)

Epikarst storage in a karst aquifer: a conceptual model based on isotopic data, Milandre test site, Switzerland, 2003, Perrin K. , Jeannin P. Y. , Zwahlen F. ,
The Milandre test site is a karst aquifer characterized by diffuse infiltration, a well developed conduit network, and several tributaries feeding an underground river. Field data include discharge rate measurements, stable isotopes, weekly rainfall and spring-water isotope sampling, and detailed isotope sampling during three flood events. Flood sampling was carried out at several tributaries corresponding to conduit flow, vadose flow and seepage flow. Weekly sampling showed a strong buffering of the rainfall isotopic signal at the spring. This attenuation suggests an important mixing reservoir in the system. Flood events showed highly peaking hydraulic responses but buffered rain isotope responses. These results indicate that the soil and epikarst sub-systems have an important storage capacity. A conceptual model of flow and transport in the soil and epikarst zone is proposed: Soil plays an important role in mixing due to the presence of capillary water storage. Consequently dampened concentrations reach the epikarst despite a rapid hydraulic response. The epikarst acts as the storage element and distributes water as either a base flow component or a quick flow component. When recharge exceeds a given threshold, excess infiltrated water bypasses the soil and epikarst and reaches the saturated zone as fresh flow. Based on this model, the significance of phreatic storage is thought to be limited, at least in Milandre test site. Hence the saturated zone is seen mainly as a transmissive zone through its well developed conduit network. (C) 2003 Elsevier B.V. All rights reserved

Das Untertagelabor in den Obir-Hhlen., 2004, Sptl, Ch.
The Obir Caves in the southern part of the province of Carinthia are among the best known dripstone caves in Austria. These caverns were only discovered as a result of mining operations during the 19th century and parts of them were adapted as a show cave which was opened in 1991. In a cave system adjacent to the show cave and not open to the public, an underground research station was set up in 1998 and has been in operation since then. This laboratory encompasses a total of six automatic drip water measurement stations in two cave chambers, as well as air temperature data loggers. On regular cave visits every one to two months since 1998, a series of manual measurements (e.g., partial pressure of CO2) and water and cave air samples have been taken. Compositional parameters determined on site include pH, electric conductivity and carbonate alkalinity. Parameters determined in laboratories elsewhere include cations (Na, K, Ca, Mg, Sr), anions (Cl, F, NO3, SO4), dissolved silica and stable isotopes (dD, d18O, d13CDIC, d13Cair). These measurements are complemented by soil studies above the cave (soil temperature and soil water chemistry, rainwater composition).[Obir-Hhlensystem]

Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: A case study from Belize, Central America, 2004, Marfia A. M. , Krishnamurthy R. V. , Atekwana E. A. , Panton W. F. ,
Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (delta(18)O) and hydrogen (deltaD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10-40.8parts per thousand). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and delta(13)C(DIC) ranged from -7.4 to -17.4parts per thousand. SO42, Ca2 and Mg2 in the water samples ranged from 2-163, 2-6593 and 2-90 mg/l, respectively. The DIC and delta(13)C(DIC) indicate both open and closed system carbonate evolution. Combined delta(13)C(DIC) and Ca2, Mg2 SO42- suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO42- content of some water samples indicates regional geologic control on water quality. Similarity in the range of delta(18)O, deltaD and delta(13)C(DIC) for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa. (C) 2003 Elsevier Ltd. All rights reserved

Results 16 to 30 of 94
You probably didn't submit anything to search for