Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That recessional moraine is a moraine deposited by a retreating glacier [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for karst water (Keyword) returned 263 results for the whole karstbase:
Showing 256 to 263 of 263
HYPOGENE PALEOKARST IN THE TRIASSIC OF THE DOLOMITES (NORTHERN ITALY), 2014, Riva, A.

In the Triassic of successions of the Italian Dolomites (Northern Italy), there are several examples of different types of hypogene paleokarst, sometimes associated with sulfur or hematite ore deposits.The paleokarst features are related to a regional volcanic event occurred during the Ladinian (Middle Triassic) that affected several carbonate platforms of Anisian-Ladinian age.This study is focusing mainly on the Latemar paleokarst, in the Western Dolomites, and on the Salafossa area in the Easternmost Dolomites.
The karst at Latemar developed as the result of a magmatic intrusion located just below the isolated carbonate platform, developing a system of phreatic conduits and some underground chambers, not justified by the entity of the submarine exposure occurring at the top of the carbonate platform. Most of these features are located about 500 m below the subaerial unconformity and are filled with middle Triassic lavas. Only in one case, the filling is represented by banded crusts now totally dolomitized, with abundant hematite. In this case, the only way to explain the presence of the karst at this depth is to invoke a deep CO2 source allowing the dissolution of the carbonate at such depths: the fact that some phreatic conduits and a possible underground chamber are filled only with lavas is pointing toward an important role of volcanism in karst development.
Salafossa is a well-known mine located in the easternmost Dolomites and has been exploited until 1986, when all the activity ceased. The main metals, in this case, are Zn-Pb-Ba-Fe, exploited within a quite complex paleokarst system developed in several levels, filled by a complex mineralized sequence. The strong dissolution led to the development of voids aligned with the main fault controlling the mineralization, with a proper karst system with phreatic morphologies.


SPELEOGENESIS BY THE SULFIDIC SPRINGS AT NORTHERN SIERRA DE CHIAPAS, MEXICO, BASED ON THEIR WATER CHEMISTRY, 2014, Rosaleslagarde L. , Boston P. J.

Conspicuous brackish sulfidic springs have been described at the northern Sierra the Chiapas, Mexico. These springs are produced by a mixture between regional and local groundwater flow paths. The regional groundwater has an average Total Dissolved Ions of 3081 mg/L so it has a brackish composition. This brackish water is saturated with respect to calcite and dolomite but undersaturated with respect to gypsum, anhydrite and halite. The mass balance and the discharge rate are used to quantify the mass and volume of minerals that are dissolved by the brackish spring water following Appelo and Postma (1993). This quantification will allow comparing the various speleogenetic mechanisms in the area. This is considering the composition of the spring water is relatively constant over time, as it is suggested by periodic measurements at the Cueva de Villa Luz springs during the last 10 years.
Sulfur isotopes in the water are consistent with anhydrite dissolution as the main source of the sulfate to the brackish spring water. Thus, the average 6 mol/L of sulfate in the brackish springs are produced by dissolution of 6 mol of anhydrite after subtracting the sulfate that could result from evapotranspiration of rainwater. Each liter of brackish water dissolved an average of 882 mg of anhydrite, which are equivalent to dissolving 0.36 cm3 of this mineral considering a density of 2.981 g/cm3. Additionally, using the average brackish water discharge rate of 144 L/s, an average of 57 g of anhydrite are being dissolved each second per every liter of brackish water. This is a minimal value because some of the sulfate in the water is used by sulfate-reducing bacteria in the subsurface to produce the hydrogen sulfide in the spring water. The anhydrite subject to dissolution is found interbedded in the Cretaceous carbonates, either from the subsurface at 4,000 m below sea level to the carbonate outcrops.
Similarly, we can calculate the volume of halite that is being dissolved by the brackish springs, considering chloride is a conservative element and subtracting the chloride concentration from the rainwater from that of the spring water following Appelo & Postma (1993). The 22 mol/L of chloride in the brackish water can result from dissolution in the subsurface of 22 moles or 1.3 g of halite per liter of brackish water. This mass of halite dissolved is equal to 0.59 cm3 considering a density of 2.168 g/cm3. Alternatively, 118 g of halite are dissolved per second per each liter of brackish water if we use the average discharge rate of 144 L/s.
Even when the brackish springs are oversaturated with respect to calcite and dolomite, their dissolution is still possible due to the common ion-effect of calcium after anhydrite dissolution and by mixing of waters with different compositions. A range of 10 to 80 % of brackish water from the regional aquifers mixes with fresh water from the local aquifer based on their water chemistry. Additionally, sulfuric acid speleogenesis occurs due to the oxidation of hydrogen sulfide to sulfuric acid.
Finally, the increase in the chloride concentration of the fresh water springs with respect to the concentration in rainwater was used to estimate that from the 4000 mm/y of annual precipitation, only 4%, 158 to 182 mm/y, recharge the aquifers. This low percentage is slightly higher than the 3.3% recharge in marls, marly limestone, silts and clays (Sanz et al., 2011), probably because of the relatively small area of carbonate outcrops over the entire region and the lack of recharge in altitudes higher than 1500 m above sea level.
Sulfuric acid is the most obvious speleogenetic mechanism occurring in the caves of the northern Sierra de Chiapas, Mexico due to the high hydrogen sulfide concentration in the spring water. In addition, the location of the springs at a zone of regional and local discharge where waters from different composition converge and mix, and the amount of mixing calculated suggests mixing is also an important speleogenetic mechanism. However, the depth and the time constrains at which these two hypogenic mechanisms occur is still unknown. The relatively low rainwater recharge rate suggests epigenesis is limited. Most likely, the porosity created by dissolution of anhydrite and halite in the subsurface is occluded by the precipitation of calcite. Chemical modeling and petrography will help to elucidate the order of the reactions occurring in the subsurface.


PONDERING THE IMPORTANCE OF SUBAERIAL CORROSION AS A SPELEOGENETIC AGENT, 2014, Sasowsky, I. D.

Subaerial corrosion has been recognized as an important cave modifying process in limited settings. But is it possible that we overlook its importance in other cases? Could it actually be a significant speleogenetic agent in its own right? Numerous corroding agents have been identified including sulfuric acid, carbonic acid, ambient water vapor, and thermal water vapor. Morphogenetic features have been described, and cautions issued about possible confusion with hypogene features. Theoretical calculations seem to limit the importance of corrosion in many settings, but it appears that great care must be taken, especially for possible confusion between “hypogene” morphologies in a cave.
Some caves in the Iberian Range (Spain) seem undoubtedly hypogene in origin based on hydrologic constraints. They also contain morphologies that are consistent with this origin. But, extreme corrosion of speleothems and bedrock may be masking the nature of the cave morphology post-drainage of the forming waters. Topographic position of some caves suggests the possibility of a strong component of subaerial corrosion as the cave forming agent


THE METHODOLOGICAL STRENGTH OF THE HYDROGEOLOGICAL APPROACH TO DISTINGUISHING HYPOGENE SPELEOGENESIS, 2014, Klimchouk, A. B.

Defined in the most general way, hypogene speleogenesis is the origin of caves in which the cave-forming agency comes from depth, in contrast to epigene speleogenesis in which the cave-forming agency (meteoric recharge and its inherent or soil-derived aggressiveness) originates at the surface. A more specific definition should rely on attributes of the cave-forming agency which are most suitable and efficient for discrimination between epigene and hypogene origin of caves.
Relying on the determination of a source of the aggressiveness in distinguishing hypogene speleogenesis is the legitimate approach but it is not a methodologically sound and practically efficient one.
The hydrogeological approach and the reference to upwelling groundwater circulation in the definition of hypogene speleogenesis provide a theoretically and methodologically sound basis not only for identifying the type of speleogenesis, but also for spatial and temporal prognosis of hypogene speleogenesis.


Karst water resources in a changing world: Review of hydrological modeling approaches, 2014,

Karst regions represent 7–12% of the Earth’s continental area, and about one quarter of the global population is completely or partially dependent on drinking water from karst aquifers. Climate simulations project a strong increase in temperature and a decrease of precipitation in many karst regions in the world over the next decades. Despite this potentially bleak future, few studies specifically quantify the impact of climate change on karst water resources. This review provides an introduction to karst, its evolution, and its particular hydrological processes. We explore different conceptual models of karst systems and how they can be translated into numerical models of varying complexity and therefore varying data requirements and depths of process representation. We discuss limitations of current karst models and show that at the present state, we face a challenge in terms of data availability and information content of the available data. We conclude by providing new research directions to develop and evaluate better prediction models to address the most challenging problems of karst water resources management, including opportunities for data collection and for karst model applications at so far unprecedented scales


CO2 emission response to different water conditions under simulated karst environment, 2015,

Habitat degradation has been proven to result associated with drought in karst region in south China. However, how this drought condition relates to CO2 efflux is not clear. In this study, we designed a simulated epikarst water–rock (limestone)–soil–plant columns, under varying water levels (treatment), and monitored CO2 concentration and efflux in soil in different seasons during 2011. The results showed that increased soil water greatly enhanced CO2 concentrations. With which treatment with epikarst water (WEW) had higher CO2 concentration than without epikarst water (WOEW). This was particularly high in low soil water treatment and during high temperature in the summer season. Under 30–40 % relative soil water content (RSWC), CO2 concentration in WEW treatment was 1.44 times of WOEW; however, under 90–100 % RSWC, this value was smaller. Comparatively, soil surface CO2 efflux (soil respiration) was 1.29–1.94 lmol m-2 s-1 in WEW and 1.35–2.04 lmol m-2 s-1 in WOEW treatment, respectively. CO2 efflux increased with increasing RSWC, but it was not as sensitive to epikarst water supply as CO2 concentration. WEW tended to weakly influence CO2 efflux under very dry or very wet soil condition and under low temperature. High CO2 efflux in WEW occurred under 50–80 % RSWC during summer. Both CO2 concentrations and CO2 efflux were very sensitive to temperature increase. As a result, at degraded karst environment, increased temperature may enhance CO2 concentration and CO2 emission; meanwhile, the loss of epikarst and soil water deficiency may decrease soil CO2 concentration and CO2 emission, which in turn may decrease karst corrosion.


LIFE AND WATER ON KARST. Monitoring of transboundary water resources of Northern Istria, 2015,

The monograph presents the natural features of Northern Istria, the karst and karst phenomena, karst hydrogeology, ecology and microbiology, and highlights in particular the vulnerability of the karst to various human activities. The main focus of attention is on karst water sources. In assessing their characteristics we used available knowledge of karst water on both sides of the border and supplemented it with new research on the transboundary area in question, which was based on field measurements and sampling, and chemical, microbiological and biological analysis of water. The collected findings form the basis for planning more effective monitoring of the quality of karst water sources, their protection and consequently the improvement of their quality.
 


Chemistry and Karst, 2015, White, William B.

The processes of initiation and development of characteris­tic surface karst landforms and underground caves are nearly all chemical processes. This paper reviews the advances in understanding of karst chemistry over the past 60 years. The equilibrium chemistry of carbonate and sulfate dissolution and deposition is well established with accurate values for the necessary constants. The equations for bulk kinetics are known well enough for accurate modeling of speleogenetic processes but much is being learned about atomic scale mechanisms. The chemistry of karst waters, expressed as parameters such as total dissolved carbonates, saturation index, and equilibrium carbon dioxide pressure are useful tools for probing the internal char­acteristics of karst aquifers. Continuous records of chemical parameters (chemographs) taken from springs and other karst waters mapped onto discharge hydrographs reveal details of the internal flow system. The chemistry of speleothem deposi­tion is well understood at the level of bulk processes but much has been learned of the surface chemistry on an atomic scale by use of the atomic force microscope. Least well understood is the chemistry of hypogenetic karst. The main chemical reac­tions are known but equilibrium modeling could be improved and reaction kinetics are largely unknown.


Results 256 to 263 of 263
You probably didn't submit anything to search for