Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That well loss is head loss caused by flow through a screen and inside a well [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for records (Keyword) returned 269 results for the whole karstbase:
Showing 256 to 269 of 269
Karst aquifer average catchment area assessment through monthly water balance equation with limited meteorological data set: Application to Grza spring in Eastern Serbia, 2013, Vakanjac Vesna Ristić, Prohaska Stevan, Dušan Polomčić, Blagojević Borislava, Vakanjac Boris

In the absence of detailed exploration of karstic catchments, the calculation of available reserves and elements of the water balance equation frequently reflect the topographic size of the catchment area, and not the actual, active (underground) size. The two differ largely where karst is concerned. The paper deals with the problem of average catchment area size estimation in the situation when meteorological data are limited to precipitation and temperature, but discharge records are available for long period. Proposed methodology was applied to, calibrated, and validated on 15 karst springs in Serbia. Results obtained with the model differ up to 20% from hydrogeological exploration results. One of investigated springs is Grza karst spring, which belongs to the karstic formation of Kučaj and Beljanica (the Carpatho­Balkanide Arch of Eastern Serbia). In this paper, we used the Grza Spring to show model application and necessary improvements to progress from graphoanalytical to analytical model. The average catchment area is linked to the model parameter that reduces potential to real evapotranspiration on monthly bases. The model potential lies in the possibility to determine not only catchment area, but real evapotranspiration and dynamic volume of the porous ­ karst groundwater storage as well.


Spring discharge records – a case study, 2013, Wicks, Carol M.

Spring discharge records integrate of all the processes and the reactions occurring within a karst basin. A brief summary of the use of discharge records as a means to constrain the internal structure of karst basins, as means to constrain rainfallrunoff models for karst basin, and as a means to determine the value of hydrodynamic parameters of karst basins is presented. Data collected from Devils Icebox, a karst basin spring in Missouri, USA, were used to assess these approaches to characterizing karst basins. For Devils Icebox, most of the discharge responses do not record information about the internal structure of the basin rather the responses record information about the recharge to the basin. A rainfall-runoff model failed to reproduce the data from which model parameters were derived and has little utility in a predictive mode. Use of conservation of mass equations as a means to derive hydrodynamic parameters is a useful approach, although critical data are lacking. More generally, karst hydrologists need quantitative tracer data and long-term, high-resolution temporal data of the input(s) to and the output(s) from karst basins.


Subterranean aquatic planarians of Sardinia, with a discussion on the penial flagellum and the bursal canal sphincter in the genus Dendrocoelum (Platyhelminthes, Tricladida, Dendrocoelidae), 2013, Stocchino G. A. , Sluys R. , Marcia P. , Manconi R.

The paper provides the first detailed account on the taxonomic richness of the subterranean freshwater triclads from Sardinia, including the description of four new species for the genera Dendrocoelum and Phagocata. New records for Dugesia benazzii, Dugesia sp., Crenobia alpina, and Phagocata sp. are also reported. The three new species of Dendrocoelum are the first reported for the island of Sardinia. These species display a bursal canal sphincter and a large adenodactyl with a characteristic anatomy with a zone of fine circular muscle fibers running through the mesenchyme of its papilla. A detailed analysis of the structure of the penial flagellum in the genus Dendrocoelum highlighted six main conditions, some of which have not been previously reported, in regard to the histology of the tip of the penis papilla and the extent of its inversion. The new species of Phagocata represents the first species recorded from Italy and the first anophtalmous species reported from Europe.


New species and new records of springtails (Hexapoda: Collembola) from caves in the Salem Plateau of Illinois, USA, 2013, Sotoadames F. N. , Taylor S. J.

The springtail (Hexapoda: Collembola) fauna of eight caves (Wizard Cave, Pautler Cave, Spider Cave, Wanda’s Waterfall Cave, Illinois Caverns, Stemler Cave, Hidden Hand Cave, and Bat Sump Cave) in the Salem Plateau of southwestern Illinois (Monroe and St. Clair counties) was surveyed in 2009 using a combination of methods, including pitfall traps, Berlese-funnel processing of litter, and hand collections by quadrat, on drip pools, free standing bait, and random locations. In total, forty-nine species of springtails were found. Four are described as new to science (Onychiurus pipistrellae n. sp., Pygmarrhopalites fransjanssens n. sp, P. incantator n. sp, and P. salemensis n. sp), four may represent new species but there is insufficient material available to prepare full descriptions (two species in the genus Superodontella, one in Pseudachorutes, one in Sminthurides), and three others (Ceratophysella cf. brevis, C. cf. lucifuga, and Folsomia cf. bisetosa) are identified to species, but differences from the nominal species suggest further studies may indicate the Illinois populations represent distinct forms. In addition, five other species represent new records for Illinois, and eighteen are new cave records for the species in North America. The new records more than double the number of springtails species known from caves in the Salem Plateau region. More than half (twenty-nine) of the species reported are ranked as rare (S1–S2) at the state level. The total number of springtail species in Salem Plateau caves could be more than twice what is recorded in the present study, and more new species and state records should be found when caves in other Illinois karst regions are more thoroughly examined.


Paleoflood events recorded by speleothems in caves, 2014, Gazquez F. , Calaforra J. M. , Forti P. , Stoll H. , Ghaleb B. , Delgadohuertas A.

Speleothems are usually composed of thin layers of calcite (or aragonite). However,
cemented detrital materials interlayered between laminae of speleothemic carbonate have been also observed in many caves. Flowstones comprising discontinuous carbonate layers form due to flowing water films,while flood events introduce fluviokarstic sediments in caves that, on occasion,are recorded as clayey layers inside flowstones and stalagmites. This record provides a potential means of understand­ing the frequency of palaeofloods using cave records.In this work,we investigate the origin of this type of detritaldeposit in El Soplao Cave (Northern Spain). The age of the lowest aragonite layer
of a flowstone reveals that the earliest flood period occurred before 500 ka, though most of the flowstone formed between 422 +69/-43 ka and 400 +66/-42 ka. This suggests that the cave was periodically affected by palaeoflood events that introduced detrital sediments from the surface as a result of occasional extreme rainfall events,especially at around 400 ka.The mineralogical data enable an evolutionary modelfor this flowstone to be generated based on the alternation offload events with laminar flows and carbonate layers precipitation that can be extrapolated to other caves in which detrital sediments inside speleothems have been found. 


The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , 2014, Briestensky Milos, Stemberk Josef, Rowberry Matt D. ,

The EU-TecNet fault displacement monitoring network records three-dimensional displacements across specifically selected tectonic structures within the crystalline basement of central Europe. This paper presents a study of recent and active tectonics at Západní Cave in northern Bohemia (Czech Republic). It extends previous geological research by measuring speleothem damage in the cave and monitoring displacements across two fault structures situated within the Lusatian Thrust Zone. The speleothem damage reflects strike-slip displacement trends: the WSW-ENE striking fault is associated with dextral strike-slip displacement while the NNW-SSE striking fault is associated with sinistral strike-slip displacement. These measurements demonstrate that the compressive stress σ1 is located in the NW or SE quadrant while the tensile stress σ3 is oriented perpendicular to σ1, i.e. in the NE or SW quadrant. The in situ fault displacement monitoring has confirmed that movements along the WSW-ENE striking fault reflect dextral strike-slip while movements along the NNW-SSE striking fault reflect sinistral strike-slip. In addition, however, monitoring across the NNW-SSE striking fault has demonstrated relative vertical uplift of the eastern block and, therefore, this fault is characterised by oblique movement trends. The fault displacement monitoring has also shown notable periods of increased geodynamic activity, referred to as pressure pulses, in 2008, 2010-2011, and 2012. The fact that the measured speleothem damage and the results of fault displacement monitoring correspond closely confirms the notion that, at this site, the compressive stress σ1 persists in the NW or SE quadrant. The presented results offer an insight into the periodicity of pressure pulses, demonstrate the need for protracted monitoring periods in order to better understanding geodynamic processes, and show that it is possible to characterise the displacements that occur across individual faults in a way that cannot be accomplished from geodetic measurements obtained by Global Navigation Satellite Systems.


Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galini`ere Cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection, 2015, Audra Philippe, Gґazquez Fernando, Rull Fernando, Bigot Jeanyves, Camus Hubert

The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric acid speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during the Neogene.


Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record .., 2015, Audra P. , Gázquez F. , Rull F. , Bigot J. Y. , Camus H.

The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, and fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric Acid Speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during the Neogene.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Chemistry and Karst, 2015, White, William B.

The processes of initiation and development of characteris­tic surface karst landforms and underground caves are nearly all chemical processes. This paper reviews the advances in understanding of karst chemistry over the past 60 years. The equilibrium chemistry of carbonate and sulfate dissolution and deposition is well established with accurate values for the necessary constants. The equations for bulk kinetics are known well enough for accurate modeling of speleogenetic processes but much is being learned about atomic scale mechanisms. The chemistry of karst waters, expressed as parameters such as total dissolved carbonates, saturation index, and equilibrium carbon dioxide pressure are useful tools for probing the internal char­acteristics of karst aquifers. Continuous records of chemical parameters (chemographs) taken from springs and other karst waters mapped onto discharge hydrographs reveal details of the internal flow system. The chemistry of speleothem deposi­tion is well understood at the level of bulk processes but much has been learned of the surface chemistry on an atomic scale by use of the atomic force microscope. Least well understood is the chemistry of hypogenetic karst. The main chemical reac­tions are known but equilibrium modeling could be improved and reaction kinetics are largely unknown.


Karst environment, 2016, Culver D. C.

Karst environments can be grouped into three broad categories, based on their vertical position in the landscape. There are surface habitats, ones exposed to light; there are shallow subterranean (aphotic) habitats oft en with small to intermediate sized spaces; there are deep subterranean habitats (caves) with large sized spaces. Faunal records are most complete for caves, and on a global basis, more than 10,000 species are limited to this habitat. Hundreds of other species, especially bats, depend on caves for some part of their life cycle. A large, but most unknown number of species are limited to shallow subterranean habitats in karst, such as epikarst and the milieu souterrain superficiel. Species in both these categories of habitats typically show a number of morphological adaptations for life in darkness, including loss of eyes and pigment, and elaboration of extra-optic sensory structures. Surface habitats, such as sinkholes, karst springs, thin soils, and rock faces, are habitats, but not always recognized as karst habitats. Both aphotic karst habitats and twilight habitats (such as open air pits) may serve as important temporary refuges for organisms avoiding temperature extremes on the surface.


Results 256 to 269 of 269
You probably didn't submit anything to search for