Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That scallop is 1. a spoon-shaped hollow carved in a cave wall, floor or ceiling due to erosion by eddies in flowing water. scallops are commonly closely packed, leaving sharp ridges at the intersects. they range from 10mm to 1m in length and as a general rule the smaller they are then the faster flowing was the water that carved them. the scallops are generally asymmetrical, with their upstream end steeper than the downstream end - a useful indicator of paleo-flow direction in abandoned passages [9]. 2. oval hollow having an asymmetric cross section along its main axis. scallops form patterns on the walls of caves and in streambeds and may be used to determine direction of flow of turbulent water, since they are steeper on the upstream side. commonly called flutes in america [10]. synonyms: (french.) cannelure, vague d'erosion; (german.) in fliebrichtung des wabers ausgezogener kolk; (greek.) kilon ooithes; (spanish.) huella de corriente; (turkish.) degirmi, tarak. see also flute.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for block (Keyword) returned 182 results for the whole karstbase:
Showing 31 to 45 of 182
Petroleum geology of the Black Sea, 1996, Robinson A. G. , Rudat J. H. , Banks C. J. , Wiles R. L. F. ,
The Black Sea comprises two extensional basins formed in a back-arc setting above the northward subducting Tethys Ocean, close to the southern margin of Eurasia. The two basins coalesced late in their post-rift phases in the Pliocene, forming the present single depocentre. The Western Black Sea was initiated in the Aptian, when a part of the Moesian Platform (now the Western Pontides of Turkey) began to rift and move away to the south-east. The Eastern Black Sea probably formed by separation of the Mid-Black Sea High from the Shatsky Ridge during the Palaeocene to Eocene. Subsequent to rifting, the basins were the sites of mainly deep water deposition; only during the Late Miocene was there a major sea-level fall, leading to the development of a relatively shallow lake. Most of the margins of the Black Sea have been extensively modified by Late Eocene to recent compression associated with closure of the Tethys Ocean. Gas chromatography--mass spectrometry and carbon isotope analysis of petroleum and rock extracts suggest that most petroleum occurrences around the Black Sea can be explained by generation from an oil-prone source rock of most probably Late Eocene age (although a wider age range is possible in the basin centres). Burial history modelling and source kitchen mapping indicate that this unit is currently generating both oil and gas in the post-rift basin. A Palaeozoic source rock may have generated gas condensate in the Gulf of Odessa. In Bulgarian waters, the main plays are associated with the development of an Eocene foreland basin (Kamchia Trough) and in extensional structures related to Western Black Sea rifting. The latter continue into the Romanian shelf where there is also potential in rollover anticlines due to gravity sliding of Neogene sediments. In the Gulf of Odessa gas condensate has been discovered in several compressional anticlines and there is potential in older extensional structures. Small gas and oil discoveries around the Sea of Azov point to further potential offshore around the Central Azov High. In offshore Russia and Georgia there are large culminations on the Shatsky Ridge, but these are mainly in deep water and may have poor reservoirs. There are small compressional structures off the northern Turkish coast related to the Pontide deformation; these may include Eocene turbidite reservoirs. The extensional fault blocks of the Andrusov Ridge (Mid-Black Sea High) are seen as having the best potential for large hydrocarbon volumes, but in 2200 m of water

The geomorphology of solution cave sequences in the Kalk Bay Mountains, southern Cape Peninsula. BSc thesis, 1996, Shearer, H.

The Kalk Bay Mountains of the southern Cape Peninsula, South Africa, show marked development of pseudokarstic features such as caverns, dolines and grikes. These features have formed over at least 100 million years on supposed inert quartzitic sandstones of the Peninsula Formation of the Table Mountain Group. Pseudokarst on sandstone is relatively rare world-wide and various aspects of cave genesis are highlighted in the Cape Peninsula. Cape Peninsula pseudokarst is relict, occurs at high altitudes above the present water table and could provide clues to palaeoenvironmental conditions during the African erosion period.
The cave systems in the Kalk Bay Mountains occur in at least three levels in the thickly-bedded sandstone. These different levels are the result of differential uplift during the Miocene and Pliocene. The Cape Peninsula Mountains are tabular and blocky, as opposed to the fold mountains of the rest of the South Western Cape. Much more of the overlying sedimentary layers in the Cape Peninsula have also been removed by weathering and erosive processes. The caves can be compared to similar pseudokarst features on sandstone in areas such as Gran Sabana, Venezuela. The acidic water chemistry in Venezuela contributes to a very intensive weathering environment. Present day humid tropical conditions in Venezuela are likely to be similar to palaeoclimatic conditions in the Kalk Bay Mountains, contributing to sandstone cave genesis.

Evaporite karst of northern lower Michigan, 1997, Black Tj,
Michigan has three main zones of evaporite karst: collapse breccia in Late Silurian deposits of the Mackinac Straits region; breccia, collapse sinks, and mega-block collapse in Middle Devonian deposits of Northern Lower Michigan, which overlaps the preceding area; and areas of soil swallows in sinks of Mississippian deposits between Turner and Alabaster in Arenac and Iosco counties, and near Grand Rapids in Kent County. The author has focused his study on evaporite karst of the Middle Devonian deposits. The Middle Devonian deposits are the Detroit River Group: a series consisting of limestone, dolomite, shale, salt, gypsum and anhydrite. The group occurs from subcrop, near the surface, to nearly 1400 feet deep from the northern tip of the Southern Peninsula to the south edge of the ''solution front'' Glacial drift is from zero to 350 feet thick. Oil and gas exploration has encountered some significant lost-circulation zones throughout the area. Drilling without fluid returns, casing seal failures, and lost holes are strong risks in some parts of the region. Lost fluid returns near the top of the group in nearby areas indicate some karst development shortly after deposition. Large and irregular lost-circulation zones, linear and patch trends of large sink holes, and 0.25 mile wide blocks of down-dropped land in the northern Lower Peninsula of Michigan were caused by surface- and ground-water movement along faults into the Detroit River Group. Glaciation has removed some evidence of the karst area at the surface. Sinkhole development, collapse valleys, and swallows developed since retreat of the glacier reveal an active solution front in the Detroit River Group

Principal features of evaporite karst in Canada, 1997, Ford Dc,
Outcrops of sulfate arid mixed sulfate-carbonate rocks are common everywhere in Canada outside of the Shield province. Interstratal salt deposits are abundant in the interior lowlands. Types of karst that occur are determined chiefly by relations between (i) formation thickness and purity, (ii) regional topography and hydraulic gradient (iii) effects of receding Wisconsinan and earlier glaciers, and (iv) extent of modern permafrost. Exposures of bare karst on thick, pure sulfate formations are comparatively rare. Two principal landform types found on them are: (1) high-density polygonal karst (micro-sinkhole densities of thousands per km(2)); where hydraulic gradients are high and tills are thin; (2) hills and ridges of blocks uplifted and fractured by hydration (anhydrite) tectonics at paleo-icefront positions where hydraulic gradients are low. Deeply till-mantled karst dominated by collapse and suffosion sinkholes in the mantling detritus is well developed in southwestern Newfoundland and in central and northern Nova Scotia. Covered karst is abundant on sulfates conformably overlain by carbonate br elastic strata; collapse sinkholes ale the principal landform. Very large breccia pipes (up to 25 x 15 km) ale associated with deep subrosion of salt during glacier recessions. Syngenetic breccia karst is a fourth, distinct category created in some formations of thin, interbedded dolostones and sulfates. Where these are exposed td high hydraulic gradients, deep calcite-cemented breccias were formed in a first generation, upon which sinkhole and pinnacle karsts and dissolution drape topographies were able to develop rapidly in late-glacial and post-glacial conditions

Relations between the structure of storage and the transport of chemical compounds in karstic aquifers, 1997, Vaute L. , Drogue C. , Garrelly L. , Ghelfenstein M. ,
Study of the movement of chemical compounds naturally present in the water, or which result from pollution, are examined according to the reservoir structure in karstic aquifers. Structure is represented by a simple geometrical model; slow Row takes place in blocks with a network of low-permeability cracks. The blocks are separated by highly permeable karstic conduits that allow rapid flow, and these form the aquifer drainage system. The karat studied covers 110 km(2). It is fed by an interrupted stream draining a 35 km(2) non-karstic basin, contaminated at the entry to the karst by effluents from a sewage treatment station. The underground water reappears as a resurgence with an annual average flow of approximately 1 m(3) s(-1), after an apparent underground course of 8 km in the karst. Several local sources of pollution (effluent from septic tanks) contaminate the underground water during its course. Sixteen measurement operations were performed at 12 water points, between the interrupted stream and the spring. Some sampling points were at drains, and others were in the low-permeability fissured blocks. Comparison at each point of the concentrations of 14 chemical compounds gave the following results: when pollutant discharge occurs in a permeable zone, movement is rapid in the drainage network formed by the karstic conduits, and does not reach the less permeable fissured blocks which are thus protected; however, if discharge is in a low-permeability zone, the flow does not allow rapid movement of the polluted water, and this increases the pollutant concentration at the discharge, This simple pattern can be upset by a reversal of the apparent piezometric gradient between a block and a conduit during Floods or pumping; this may reverse flow directions and hence modify the movement of contaminants. The study made it possible to site five boreholes whose positions in the karstic structure were unknown, showing the interest of such an approach for the forecasting of the impact of potential pollution.

Chemical deposits in volcanic caves of Argentina., 1998, Benedetto Carlos, Forti Paolo, Galli Ermanno, Rossi Antonio
During the last Conference of the FEALC (Speleological Federation of Latin America and Caribbean Islands) which was held in the town of Malargue, Mendoza, in February 1997, two volcanic caves not far from that town were visited and sampled for cave mineral studies. The first cave (Cueva del Tigre) opens close to the Llancanelo lake, some 40 kms far from Malargue and it is a classical lava tube. Part of the walls and of the fallen lava blocks are covered by white translucent fibres and grains. The second visited cave is a small tectonic cavity opened on a lava bed some 100 km southward of Malargue. The cave "El Abrigo de el Manzano" is long no more than 10-12 meters with an average width of 3 meters and it hosts several bird nests, the larger of which is characterized by the presence of a relatively thick pale yellow, pale pink flowstone. Small broken or fallen samples of the secondary chemical deposits of both these caves have been collected in order to detect their mineralogical composition. In the present paper the results of the detailed mineralogical analyses carried out on the sampled material are shortly reported. In the Cueva del Tigre lava tube the main detected minerals are Sylvite, Thenardite, Bloedite and Kieserite, all related to the peculiar dry climate of that area. The flowstone of "El Abrigo de el Manzano" consists of a rather complex admixture of several minerals, the large majority of which are phosphates but also sulfates and silicates, not all yet identified. The origin of all these minerals is related to the interaction between bird guano and volcanic rock.

Paleomagnetic study of Triassic sediments from the Silica Nappe in the Slovak Karst, a new approach, 1998, Kruczyk J. , Kadzialkohofmokl M. , Tunyi I. , Pagac P. , Mello J. ,
Intensive paleomagnetic and rock magnetic study were performed for Triassic limestones from the Silica Nappe in the Slovak Karst. Five exposures situated on the eastern and western side of the Stitnik-Plesivec fault were sampled for this study. In all exposures a secondary component of remanence of normal polarity (N), carried by secondary PSD magnetite was found. In the Silicka Brezova exposure (SE) apart from the N component, another secondary component of reversed polarity (R), carried by hematite; was isolated. Both components were acquired after folding. The R component was acquired during the Odra reversal event in the Oligocene (Birkenmajer et al. 1977). Comparison of its direction with the reference data let us conclude that the area belonged during this time to the African affinity. The declination of the R component suggests that after this magnetization period the studied region rotated anticlockwise by about 90 degrees around an intraplate vertical axis together with the whole Pelso megaunit. According to Marton et al. (1995) and Marton & Fodor (1995) the rotation took place in two phases, the first one by about 50 degrees took place in the Early Miocene, the second one, by about 30 degrees - in the Late Miocene. The N component, isolated by us, seems to have been acquired during the Middle Miocene after the first and before the second rotational phases: its declination agrees with a counterclockwise rotation of the Silica Nappe by about 30-40 degrees during the Late Miocene, as postulated by the cited authors. The inclination of the N component is lower, than the expected for Miocene, but agrees with the Miocene results for the Bukk region also belonging to the Pelso block, confirming the idea about the Miocene 'southern escape' of the Pelso block (Marton 1993). The final tectonic activity in the study area was connected with formation of the Stitnik-Plesivec fault (Late Tertiary-Quaternary). Our results suggest, that the fault is of rotational type and resulted in different tilting of beds situated on its eastern and western sides

Holocene development of three isolated carbonate platforms, Belize, central America, 1998, Gischler E. , Hudson J. H. ,
Locally operating factors such as topography of the reef basement and exposure to waves and currents rather than regionally effective factors such as the post-glacial sea level rise in the western Atlantic explain the different Holocene developments of the three isolated carbonate platforms Glovers Reef, Lighthouse Reef, and Turneffe Islands offshore Belize. A series of NNE-striking tilted fault-blocks at the passive continental margin forms the deep basement of the Belize reefs. Glovers and Lighthouse Reefs are located on the same fault-block, while Turneffe Islands is situated west of Lighthouse Reef on an adjacent fault-block. The three platforms are surrounded by deep water and have surface-breaking reef rims. Significant differences exist between platform interiors. Glovers Reef has only 0.2% of land and an 18 m deep, well-circulated lagoon with over 800 patch reefs. Lighthouse Reef has 3% of land and a well-circulated lagoon area. Patch reefs are aligned along a NNE-striking trend that separates a shallow western (3 m) and a deeper eastern (8 m) lagoon. Turneffe Islands has 22% of land that is mainly red mangrove. Interior lagoons are up to 8 m deep and most have restricted circulation and no patch reefs. Surface sediments are rich in organic matter. In contrast, the northernmost part of Turneffe Islands has no extensive mangrove development and the well-circulated lagoon area has abundant patch reefs. Holocene reef development was investigated by means of 9 rotary core holes that all reached Pleistocene reef limestones, and by radiometric dating of corals. Maximal Holocene reef thickness reaches 11.7 m on Glovers Reef, 7.9 m on Lighthouse Reef, and 3.8 m on Turneffe Islands. Factors that controlled Holocene reef development include the following. (1) Holocene sea level. The margin of Glovers Reef was flooded by the rising Holocene sea ca. 7500 YBP, that of Lighthouse Reef ca. 6500 YBP, and that of Turneffe Islands between 5400 and 4750 YBP. All investigated Holocene reefs belong to the keep-up type, even though the three platforms were flooded successively and, hence, the reefs had to keep pace with different rates of sea level rise. (2) Pre-Holocene topography. Pleistocene elevation and relief are different on the three platforms. This is the consequence of both tectonics and karst. Different elevations caused successive reef initiation and they also resulted in differences in lagoon depths. Variations in Pleistocene topography also explain the different facies distribution patterns on the windward platforms that are located on the same fault-block. On Lighthouse Reef tectonic structures are clearly visible such as the linear patch reef trend that is aligned along a Pleistocene fault. On Glovers Reef only short linear trends of patch reefs can be detected because the Pleistocene tectonic structures are presumably masked by the higher Holocene thickness. The lower Pleistocene elevation on Glovers Reef is probably a consequence of both a southward tectonic tilt, and stronger karstification towards the south related to higher rainfall. (3) Exposure to waves and currents. Glovers Reef, Lighthouse Reef, and the northernmost part of Turneffe Islands receive the maximum wave force as they are open to the Caribbean Sea. Adjacent lagoons are well-circulated and have luxuriant patch reef growth and no extensive mangrove development. By contrast, most of Turneffe Islands is protected from the open Caribbean Sea by Lighthouse Reef to the east and is only exposed to reduced wave forces, allowing extensive mangrove growth in these protected areas. (C) 1998 Elsevier Science B.V

Fault and stratigraphic controls on volcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, Western Australia, 1998, Vearncombe S. , Vearncombe J. R. , Barley M. E. ,
Early Archaean, Fe-Zn-Cu volcanogenic massive sulphide deposits of the Strelley Belt, Pilbara Craton. occur at the top of a volcanic dominated sequence, at the interface of felsic volcanic rucks and siliceous laminites, beneath an unconformity overlain by elastic sedimentary rocks. The structure of the Sulphur Springs and Kangaroo Caves VMS deposits is relatively simple, with the present morphology reflecting original deposition rather than significant structural modification. The rocks have been tilted giving an oblique cross-sectional view of discordant high-angle, deep penetrating faults in the footwall, which splay close to the zones of voltcanogenic massive sulphide mineralization. Faults do not extend far into the overlying sedimentary cover, indicating their syn-volcanic and syn-mineralization timing. Both the Sulphur Springs and Kangaroo Caves sulphide deposits are located within elevated grabens in a setting similar to massive sulphide mineralization in modern back-are environments. Mineralization at Sulphur Springs and Kangaroo Caves is located at the edge of the grabens, at the site of intersecting syn-volcanic extensional faults.

Contribution to knowledge of gypsum karstology, PhD thesis, 1998, Calaforra Chordi, J. M.

The objective of this study was not to establish a definitive judgement regarding a topic for which very little previous information was available, but rather to open new routes for research into karst by means of a particularized analysis of some of the factors involved in the speleogenesis of gypsiferous materials. The main obstacle to the attainment of this goal has been the scientific community's lack of interest in karst in gypsum, particularly in our country, until the nineteen eighties. To overcome this neglect it was decided, in my opinion quite correctly, to extend the bounds of the study as far as possible, so that the information obtained from the contrast found between the most important worldwide zones of karst in gypsum could be applied to the gypsiferous karst in our country, and in particular, to the most significant, the karst in gypsum of Sorbas.
This is the justification for the numerous references in the text to the gypsiferous karst and cavities in gypsum that are most relevant in Spain (Sorbas, Gobantes, Vallada, Archidona, Estremera, Baena, the Ebro Basin, Estella, Beuda, Borreda, etc.) and also to the best-known gypsiferous karsts worldwide (Podolia, Secchia, Venna del Gesso Romagnolo, Sicily and New Mexico). By means of these comparisons, the initial lack of information has been overcome.
The study is based on three central tenets, which are interrelated and make up the first three chapters of this report. The first consideration was to attempt to characterize the particular typology of gypsiferous karst from the geological (both stratigraphic and structural) point of view. This chapter also provides an introduction to each of the gypsiferous karsts examined. The second chapter is dedicated to the geomorphology of gypsiferous karst, under both superficial and subterranean aspects. It is important to note that the study of a gypsiferous karst from the speleological point of view is something that may seem somewhat unusual; however, this is one of the points of principle of this paper, the attempt to recover the true meaning of a word that has historically been unfairly condemned by a large part of the Spanish scientific community. Thirdly, a detailed study has been made of the hydrochemistry of the most important gypsiferous karsts in our region, together with the presentation of a specific analytical methodology for the treatment of the hydrochemical data applicable to the gypsiferous karst.
Geological characterization of gypsum karst
In the characterization of karst in gypsum, the intention was to cover virtually all the possibilities from the stratigraphic and structural standpoints. Thus, there is a description of widely varying gypsiferous karsts, made up of Triassic to Miocene materials, some with a complex tectonic configuration and others hardly affected by folding. The gypsiferous karsts described, and their most significant geological characteristics, are as follows:
Karst in gypsum at Sorbas (Almeria): composed of Miocene gypsiferous levels with the essential characteristic of very continuous marly interstrata between the layers of gypsum, which decisively affect the speleogenesis of the area. The gypsum layers have an average thickness of about 10 m and, together with the fracturing in the zone, determine the development of the gypsiferous cavities. These are mainly selenitic gypsum - occasionally with a crystal size of over 2 m - and their texture also has a geomorphologic and hydrogeologic influence. This area is little affected by folding and so the tectonic influence of speleogenesis is reduced to the configuration of the fracturing.
The Triassic of Antequera (Malaga): this is, fundamentally, the gypsiferous outcrop at Gobantes-Meliones, originating in the Triassic and located within the well-known "Trias" of Antequera. It is made up of very chaotic gypsiferous materials containing a large quantity of heterometric blocks of varied composition; the formation may be defined as a Miocene olitostromic gypsiferous breccia that is affected by important diapiric phenomena. The presence of hypersoluble salts at depth is significant in the modification of the hydrochemical characteristics of the water and in the speleogenetic development of the karst.
The Triassic of Vallada (Valencia): Triassic materials outcrop in the Vallada area; these mainly correspond to the K5 and K4 formations of the Valencia Group, massive gypsum and gypsiferous clays. The influence of dolomitic intercalations in the sequence is crucial to the speleogenesis of the area and this, together with intense tectonic activity, has led to the development in this sector of the deepest gypsiferous cavity in the world: the "Tunel dels Sumidors". As in the above case, the presence of hypersoluble salts at depth and the varied lithology influence the variations in the hydrodynamics and hydrochemistry of the gypsiferous aquifer.
Other Spanish gypsum karsts: this heading covers a group of gypsiferous areas and cavities of significant interest from the speleogenetic standpoint. They include the area of Estremera (Madrid), with Miocene gypsiferous clays and massive gypsum arranged along a large horizontal layer; this has produced the development of the only gypsiferous cavity in Spain with maze configuration, the Pedro Fernandez cave. The study of this cave has important hydrogeological implications with respect to speleogenesis in gypsum in phreatic conditions. The Baena (Cordoba) sector, in terms of its lithology, is comparable to the "Trias de Antequera". Here, the cavities developed in gypsiferous conglomerates, following structural discontinuities have enabled contact between carbonate and gypsiferous levels, and so we may speak of a mixed karstification: a karst in calcareous rocks and gypsum. The karst of Archidona (Malaga) is similar to that of the Gobantes-Meliones group and is significant because of the geomorphologic evolution of the karst, which is related to the diapiric ascent of the area and the formation of karstic ravines. The karst in the Miocene and Oligocene gypsum of the Ebro Basin (Zaragoza), has been taken as a characteristic example of a gypsiferous karst developed under an alluvial cover, with the corresponding geomorphological implications in the evolution of the surface landforms. In the gypsiferous area of Borreda (Barcelona), the presence of anhydritic levels in the sequence might have influenced the speleogenesis of its cavities. The cavity of La Mosquera, in Beuda (Girona), developed in massive Paleogene gypsum. This is the only Spanish example of a phreatic gypsiferous cavity developed in saccaroid gypsum, which is related to the particular subterranean morphology discovered. Finally, this group includes other Spanish gypsiferous outcrops visited during the preparation of this report, the references to which may be found in the relevant chapters.
Karst in gypsum in Europe and America: In order to complete the study of karst in gypsum, and with the idea of using all the available data on the karstology of gypsiferous materials for comparative studies of data for our country, a complementary activity was to define the most significant geological characteristics of the most important gypsiferous karsts in the world. An outstanding example is the gypsiferous karst at Podolia (Ukraine), developed in microcrystalline Miocene gypsum which has undergone block tectonics related to the collapse of the Precarpatic foredeep. This gypsum provides interesting data on speleogenesis in gypsiferous materials, as its evolution is related to the confining of the only gypsiferous stratum (of 10 to 20 m depth) producing interconnected labyrinthine galleries of over 100 km in length. Another well-known karst in gypsum is the one located at "Venna del Gesso Romagnolo" (Italy), in the Bologna region, with a lithology that is very similar to that which developed at Sorbas, but with the difference that it underwent more intense tectonics with folding and fracturing of the Tertiary sediments of the Po basin. In the same Italian province, in "L'alta Val di Sec-chia", there are outcrops of karstified Triassic materials which correspond to the formation of Burano, composed of gypsum and anhydrite with hypersoluble salts at depth and very notable diapiric phenomena. The study of this area has been used for a comparative analysis - geomorphology and hydrogeochemistry - with the Spanish gypsiferous karsts developed in Triassic levels. The third Italian gypsiferous karst to be considered is the one developed in Sicily, which has extensive Messinian outcrops of microcrystalline and selenitic gypsum as well as a great variety of lithologic types within the gypsiferous sequence, which we term the "gessoso solfifera" sequence. This gypsiferous karst is especially interesting from the geomorphologic standpoint due to the great quantity and variety of present superficial karstic forms. This has also served as a guide for the study of Spanish gypsiferous karsts. Finally, considering the relation between climatology and the development of karstic forms, we have also studied the karst in gypsum in New Mexico, where there is an extensive outcrop of Permian gypsum, both micro and macrocrystalline, situated on a large platform almost unaffected by deformation, and where the conditions of aridity are very similar to those found in the gypsiferous karst of Sorbas.
Geomorphological characterization of gypsum karst
From the geomorphological standpoint, the intention is to give an overview of the great variety of karstic forms developed in gypsum, traditionally considered less important than those developed in carbonate areas. This report shows this is not the case.
The theory of Convergence of Forms has been shown to be an efficient tool for the study of the morphology of karst in gypsum. Here, its principles have been used to provide genetic explanations for various gypsiferous forms derived from carbonate studies, and for the reverse case. In fact, studying a karst in gypsum is like having available a geomorphological laboratory where not only are the processes faster but they are also applicable to the karstology of carbonate rocks.
A large number of minor karstic forms (Karren) have been identified. The most important factors conditioning their formation are the texture of the rock, climatology and the presence of overlying deposits. The first, particularly, is largely responsible for determining the abundance of certain forms with respect to others. Thus, Rillenkarren, Trittkarren and small "kamenitzas" are more frequently found in microcrystalline and sandstone gypsum (for example, karst in gypsum in Sicily (Italy) and Va-llada (Valencia, Spain). Others seem to be more exclusive to selenitic gypsum, such as exfoliation microkarren, or are closely related to the climatology of the area (Spitzkarren develops from the alteration of gypsum in semiarid conditions). Others are related either to the presence of developed soil cover (Rundkarren, using Convergence of Forms), or to their specific situation (candelas and Wallkarren around dolines and sinkholes) or to the microtexture of the gypsum and the orientation of the 010 and 111 crystalline planes and twinning planes for the development of nanokarren.
The tumuli are the most peculiar forms of the Sorbas karst in gypsum, though they have also been identified in other gypsiferous karsts (Bolonia, New Mexico, Vallada, etc.). These are subcircular domes of the most superficial layer of the gypsum. Their formation has been related to processes of precipitation-solution and of capillary movement through the gypsiferous matrix. Their extensive development is largely determined by the climatology of the area and by the structural organization. It is therefore clear that the best examples are found in the karst of Sorbas due to the abrupt changes in temperature and humidity that occur in a semiarid climate, and because of the horizontality of the gypsiferous sequence.
Karst in gypsum and its larger exokarstic forms, apart from being climatically determined, also depend on the structural state and lithological determinants of the area. Thus, it is possible to differentiate between gypsiferous karsts where the lithology, together with erosive breakup, is more important (Sorbas and New Mexico) and others where confining hydraulic conditions persist (Estremera and Podolia). In other cases, tectonics has played a significant modelling role, and there is a clear possibility of an inversion of the relief (Bolonia or Sicily) or of the effect of diapiric processes (Secchia, Vallada, Antequera). The typological diversity of the dolines is obviously also related to these premisses. Another example is the relation existing between carbonate precipitation and gypsum solution, as evidenced in contrasting examples (Bolonia versus Sorbas).
Subterranean karstic forms have been examined from a double perspective: the morphology of the passages and the mineralization within the cavities. With respect to the former, a noteworthy example is the interstratification karst of Sorbas, where subterranean channels have developed during two well-differentiated phases, the phreatic and the vadose. The first was responsible for the formation of the small proto-galleries, currently relicts that are observable as false dome channels in the bottom of the gypsiferous strata. The second, with an erosive character, enabled the breakup of the marly interstrata and the formation of the large galleries found today. Other aspects considered include the speleogenetic influence of the presence of calcareous intercalations in the gypsiferous sequence (Vallada karst), gypsiferous agglomerates (Baena karst), anhydrite (Rotgers karst), suffusion processes (Sorbas karst) and the importance of condensation.
Spelothemes in gypsiferous cavities have been approached with special concern for gypsiferous speleothemes, in particular those which, due to their genetic peculiarity or to the lack of previous knowledge about them, are most significant. Among these are gypsum balls, with phenomena of solution, detritic filling, capillarity and evaporation; gypsum hole stalagmites, where the precipitation-solution of the gypsum controlling the formation of the central orifice is related to the previous deposit of carbonate speleothemes; gypsum trays that mark the levels of maximum evaporation; gypsum dust, determined by abrupt changes in temperature and humidity in areas near the exterior of gypsiferous cavities. All of these are characteristic of, and practically exclusive to, gypsiferous karsts in semiarid ztenes such as Sorbas and New Mexico.
Karst in gypsum has been morphologically classified with reference to the previously-mentioned criteria: the presence and typology of epigean karstic forms, both macro and microform; the typology of hypogean karstic forms (passages) and the type of speleothemes within the cavities (gypsiferous or carbonate). All these variables are clearly influenced by climatology, and so a study of the geomorphology of gypsiferous karst is seen to be an efficient tool for the analysis of the paleoclimatology of an area.
Hydrogeochemical characterization of gypsum karst
The hydrogeochemical characterization of karst in gypsum was approached in two stages. The first one was intended to establish themodels to be applied to the hydrochemistry approach, while the second provided various examples of hydrochemical studies carried out in gypsiferous karsts.
The theoretical framework which has been shown to be most accurate with respect to the formulation of chemical equilibria in water related to gypsiferous karst is the Virial Theory and the Pitzer equations.
For this study, we used a simplification of these equations as far as the second virial coefficient by means of a simple, polynomial variation to obtain the equilibrium state of the water with respect to the gypsum, for an ionic strength value greater than 0.1 m and temperatures of between 0.5 and 40 "C. This was the case of the gypsiferous karsts found to be related to hypersaline water at depth (Vallada, Gobantes-Meliones, Poiano). In the remaining situations, where the ionic strength was below 0.1 m, only the theory of ionic matching was used.
The hydrochemical study of the gypsiferous karst of Gobantes-Meliones (Malaga) led to the hypothesis of the possible influence of hypersaline water on karstification in gypsum. Using theoretical examples of the mixing of water derived both from hypersaline water and from water related only to the gypsiferous karst, it was shown that above a percentage content of 0.1:0.9 of saline and sulphated water, the mixture is subsaturated with respect to gypsum and other minerals. On reaching percentages greater than 0.5:0.5, values of oversaturation are again found. This could mean that the contact between sulphated and hypersaline water is a karstification zone in gypsum at depth.
In the gypsiferous karst at Salinas-Fuente Camacho (Granada), a study has been made of the hydrochemical influence of dolomitic levels in the sequence by means of the analysis of the hydrochemical routes between hydraulically-connected points. The generic case of mass transfer in this gypsiferous aquifer implies a precipitation of calcite which is in-congruent with dolomitic solution, proving that the process of dedolomitization in gypsiferous aquifers with an abundance of dolomitic rocks can be an effective process. In situations of high salinity, with contributions of hypersaline water, the process may be inverted, such as occurs in coastal carbonate aquifers influenced by the fresh-saltwater interface.
The gypsiferous aquifer of Sorbas-Tabernas (Almeria) provides the best case of karstification in gypsum in Spain; the hydrochemical study carried out has been used as an example of karstification in gypsum completely uninfluenced by sodium-chloride facies. It is shown, from the hydrochemical similarities between the different sectors, that the uniformity of the flow from the system main spring (Los Molinos) responds to the delayed hydraulic input through the overlying post-evaporitic materials and to the pelitic intercalations of the gypsiferous sequence. The aquifer is partially semiconfined, a situation which is comparable to the onset of the karstification stage, while the area of the Sorbas karst, strictly speaking, bears no hydriaulic relation to the rest of the system, behaving like a free aquifer intrinsically related to the epikarstic zone. This fact is demonstrated by the hydrochemical differences between the main spring and those related to gypsiferous cavities.
Apart from the general study of the Sorbas-Tabemas aquifer, a study was also made of the hydrochemical-time variations within cavities, and in particular within the Cueva del Agua, where it is possible to observe particular processes affecting karstification in gypsum, such as the precipitation of carbonates on the floor of the cavity which produce, in that area, a greater solution of gypsum (the phenomenon of hyperkarstification). Furthermore, the temporal evolution of the chemistry of the cavity, along 800 m of subterranean flow through its interior, shows the existence of inertial sectors where the variations were less abrupt. Only in the case of particular sectors, related to sporadic hydriaulic contributions or to the proximity to points of access., was a notable seasonal influence detected.
A similar hydrochemical study was carried out in the karst of Vallada (Valencia), along the cavity of the Tunel dels Sumidors. The chemistry here was compared with that of the springs of Brolladors (whose water rapidly infiltrates into the cavity) and Saraella (a saline resurgence of the whole system). Unexpected increases in the ionic content of certain salts (sulphates and chlorides) were detected during periods of increased flow; these were interpreted as the effect of the recharging of the Saraella spring arising from the immediate contribution of rapidly circulating sulfated water coming from the cavity and the subsequent mobilization of interstitial water with an ionic content higher than the characteristic level of the spring.
We present as a hypothesis the idea that, in addition to the hydrogeochemical processes described that can affect the evolution of a gypsiferous karst, the processes of sulphate reduction also influence karstification in gypsum, at least during the earliest stages. Some examples such as the presence of gypsum with abundant organic matter reprecipitated into phreatic channels (Sorbas) or veins of sulphur related to gypsiferous karsts (Podolia, Sicily) lend support to this idea.
Studies of the solution-erosion of gypsum have been performed by physical methods (tablets and M.E.M.) showing that the solution-erosion of gypsum within cavities is minimal (0.03 mm/ year) compared to that existing in the exterior (0.3 mm/year). The speleogenetic effect of condensation within the cavities has also been shown, with solution-erosion rates of 0.005 mm/year to be like the equivalent surface lowering. These data correspond to the karst in gypsum at Sorbas, where, additionally, a study about the time variation of the solution-erosion was carried out. It was found that the process is not continuous but clearly sporadic. During periods of torrential rain, the solution-erosion ranges from a weight loss of 400 mg/cm2/year on the surface of the karst to 75 mg/cm2/year inside the caves, while during the rest of the year the weight loss was barely 1 mg/cm2/year. The physical methods were compared with the results obtained from chemical methods, and it was found that, in general, higher values were obtained with the former (10-20% higher when weighted for the rainfall during the measuring periods). Thus it is reasonable to consider that the erosive process is more marked than was at first assumed.
In total, three cavity tracing experiments were carried out, all with fluoresceine, two of them in Cueva del Agua in Sorbas (during periods of high and low water levels) and the other in Tunel dels Sumidors in Vallada. At the first site, the comparison of the two tracing tests reveals a differential hydrodynamic behaviour of the cavity for the two contrasting situations; periods of high water input and periods of low rainfall. This behaviour is characteristic of well developed karstic aquifers, where the hydrodynamic effect of the circulation of water through small channels or, in this case, through the gypsiferous matrix and interbedded marly layers, seems to be more important under conditions of low hydraulic input than when rainfall is abundant. The two situations tested seem to confirm that the Cueva del Agua system, an epikarstic aquifer, which is representative of karstification in gypsum, has scarce retentive power and so large volumes of precipitation are totally discharged via the spring within a few days. However, the explanation of the small but continuous flow from the base of the cavity requires the inclusion of other factors in the interpretation. In this case, the flow seems to be fairly independent of rainfall and attributable to other processes, in addition to the previously described ones, such as the retentive power of the gypsiferous matrix and the marly interstrata. These might include the high degree of condensation measured over long periods, both on the surface of the karst in gypsum and within the cavities. In the case of the Tunel dels Sumidors, a highly irregular response was found, despite the fact that the coefficient of dispersivity was found to be 0.4. This value is similar to that obtained for the karst in gypsum at Sorbas in response to low water conditions, and so, here too, one might assume the influence of greater than expected flow-retaining processes, between the entry and exit points. Doubtless the karstic system of the Tunel dels Sumidors is more complex than was initially expected and in fact, the irregularity reflected by the fluoresceine concentration curve over time implies the existence of other factors to explain the diversity of the relative maxima obtained. Firstly, the presence of numerous Triassic clay intercalations might delay the flow, in addition to retaining a certain quantity of fluoresceine by ionic exchange. There is also a possibility that the flow is dispersed through a network of small conduits and pores, due to the permeability of the gypsiferous matrix. Finally, we cannot discount the possible existence of a deep-level input which, in this case, would be responsible for the variation in the flow and the chemical composition. This set of suppositions, as a whole, would explain the fact that the response of the spring to tracing is so irregular, even though we cannot achieve a definition of the qualitative influence of each one on the hydrodynamics of the system.
In order to verify some of the above hypotheses, particularly those referring to the process of condensation within cavities, an experiment was designed, consisting of a microtracing test at some points where condensation had been detected within the Cueva del Agua at Sorbas. The test produced a range of condensation flow speed values of 0.2 to 30 cm/hour and shows that, in those sections where the presence of condensation flow is visually apparent, there is a rapid dispersion of the colourant. However, it also shows that at points where there is no apparent condensation the process also occurs, but at a lower rate of efficiency. The importance of condensation within cavities has two aspects; firstly, speleogenetic, with the development of solution forms (cupolas) and deposit forms (capillarity boxwork); and secondly, hydrogeological, as this is the reason why certain processes (strong changes in temperature and humidity, multiple routes of airflow exchange with the exterior) may in themselves constitute a hydraulic contribution, of slight importance, but sufficient to explain a large part of the base flow (0.2 - 0.8 L/s) of a whole cavity system such as the Cueva del Agua in semiarid conditions.
With the intention of completing the analyses carried out in various karsts in gypsum, instruments were installed in the Cueva del Agua at Sorbas to measure, by continuous registration, some important physico-chemical parameters that might provide additional data on the hydro-geologic behaviour of this gypsiferous karst, especially at the level of the epikarstic zone. The parameters of temperature and water conductivity were considered most important, due to their singular behaviour patterns. During the experiment there were two periods of rainfall that modified the chemistry of the cavity, one of 30 mm in two days and another of 200 mm (almost the annual total) in four days. In the second case, which was much more extreme, a very significant increase in water temperature (up to 7 °C during the initial period of high water flow) was detected, while conductivity fell. But suddenly, when the minimum conductivity was reached, the temperature dropped sharply by 6-7 °C to return to the base temperature of the cavity. Subsequently, the temperature again stabilized at about 7 °C above the data recorded during the dry period. This behaviour pattern was not detected when the rainfall was slight. The explanation for this dual behaviour observed is fundamentally based on the quantity of rainfall and on the differences between the exterior air temperature, the temperature of interstitial water and the temperature recorded in the spring during high water flow. When water temperature in the cavity during high water flow is higher than the base temperature recorded in the period immediately before, it means that the interstitial water does not mobilize. However, when at any time the two temperatures coincide, one might suppose that there might have existed a process of mobilization of the water previously resident in the rock, by a piston effect, but in the unsaturated zone. On the other hand, the temporal variations of these parameters during the months following periods of high rainfall have enabled us to detect the existence of distinct periods during the return to normal cavity conditions. By carefully examining the decrease curve of water temperature inside the cavity while conductivity regained its maximum stable value, two periods may be differentiated. The first may be termed the "inertial influence period", when the rainfall occurring removes all signs of natural variation in the cavity. Thus, the daily external influences are not clearly detectable and the curve is downward-sloping and asymptotic with no significant oscillations. In the second period, which ends with the total stabilization of the parameter at the level of the initial conditions, the asymptotic descent is seen to be affected by daily temperature variations. This is termed the "inertial recovery period", during which external variations start to have an effect on the interior of the cavity such that there is a progressive increase in the amplitude of the daily variation in water temperature, air temperature and relative humidity. This behaviour pattern of variation of these parameters during periods of high rainfall, might be extended to all karstic systems, varying only in magnitude and temporal extent.

Bedding planes, moved bedding planes, connective fissures and horizontal cave passages (Examples from Postojnska Jama cave), 1998, Č, Ar Jož, E, Š, Ebela Stanka

In 3 examples of passage parts from Postojnska Jama their speleogenesis was studied. It was shown that they are formed along bedding planes, moved bedding planes and connective fissures. The advantage for speleogenesis of some bedding planes and moved bedding planes is represented with their connection into penetrative effective porosity in specific structural block.

Hydrogeology of Kartchner Caverns State Park, Arizona, 1999, Graf, C. G.
Three distinct hydrogeologic systems occur within Kartchner Caverns State Park, Arizona, each in fault contact with the other two. The southeastern corner and eastern edge of the park is part of the large graben that formed the San Pedro Valley during Miocene Basin and Range faulting. A thick alluvial sequence fills this graben and contains a regional aquifer covering 1000 km. One well in the park penetrates this aquifer. The groundwater level measured in this well was 226 m below land surface (1167 m msl), which is 233 m lower than the lowest measured point inside of Kartchner Caverns (1400 m msl). A pediment occupies a small part of the southwestern corner of the park. Structurally, this feature is part of the Whetstone Mountains horst rising above the park to the west. The pediment consists of a bedrock surface of Precambrian Pinal Schist overlain by a few tens of meters of granite wash sediments. Groundwater occurs at depths of 4-18 m below land surface in wells tapping the granite wash sediments. Data from these wells indicate that the zones of saturation within the granite wash sediments are probably of limited lateral extent and yield little water to wells. At the boundary between the pediment and the carbonate ridge containing Kartchner Caverns, the water table in the granite wash aquifer is 20 m higher than the bottom of the nearest known cave passage, located about 200 m to the east.The arid carbonate hills occupying the northwestern part of the park are the erosional remnants of a fault block (the Kartchner Block) that was displaced downward with respect to the Whetstone Mountains horst to the west. Kartchner Caverns is wholly contained in a ridge of highly faulted Mississippian Escabrosa Limestone and cuts conspicuously across Escabrosa beds dipping 10-40 to the southwest and west. Meteoric water enters the Kartchner Block and Kartchner Caverns from infiltration of runoff in washes that border the block and from overhead infiltration of precipitation. A small amount of groundwater also may flow into the Kartchner Block from the schist pediment to the south. Response in the cave to these fluxes is slow. As calculated from past records, the probability of flooding in the cave in any one year is about 57%.

Overview of Kartchner Caverns, Arizona, 1999, Hill, C. A.
In this paper, the sequence of events for Kartchner Caverns and surrounding region are correlated and traced from the Mississippian Period to the present. Pre-cave events include the deposition of the Escabrosa Limestone during the Mississippian Period and block faulting and hydrothermal activity in the Miocene Epoch. The cave passages formed in the shallow phreatic zone ~ 200 Ka. Vadose events in the cave include the inwashing of pebble gravels and a maximum deposition of travertine during the Sangamon interglacial. Backflooding by undersaturated water caused bevelling of the limestone and travertine. Recent events include the habitation of the cave by vertebrates and invertebrates, and the discovery and development of the cave by humans.

Sedimentology and Paleomagnetism of Sediments, Kartchner Caverns, Arizona, 1999, Hill, C. A.
Clastic deposits in Kartchner Caverns consist of coarse deposits (breakdown, pebble gravel and micaceous sand) and fine-grained deposits (fault gouge and blocky clay). The coarse deposits are all related to the vadose history of the cave, while the fine-grained deposits are related to the phreatic history of the cave and, probably, to the beginning of vadose conditions. The illite clay in fault zones was possibly derived from the underlying Pinal Schist. The clay mineral rectorite is most likely a hydrothermal alteration of illite within the faults prior to the dissolution of the cave. The blocky clay unit is autochthonous sediment that was at least partially derived from residual fault gouge clay at the time of cave dissolution. The pebble gravels were deposited during different flood events in different parts of the cave, with a lateral fining of micaceous sand in back-wash areas. The blocky clay, pebble gravel, and micaceous sand are all paleomagnetically normal and date from the Brunhes/Matuyama normal (<~780 Ka). The clay mineral nontronite probably reconstituted from residual illite/rectorite under high pH, low Eh flood-water conditions within the cave environment

Cueva de Villa Luz, Tabasco, Mexico: Reconnaissance Study of an Active Sulfur Spring Cave and Ecosystem, 1999, Hose, L. D. , Pisarowicz, J. A.
Cueva de Villa Luz (a.k.a. Cueva de las Sardinas) in Tabasco, Mexico, is a stream cave with over a dozen H2S-rich springs rising from the floor. Oxidation of the H2S in the stream results in abundant, suspended elemental sulfur in the stream, which is white and nearly opaque. Hydrogen sulfide concentrations in the cave atmosphere fluctuate rapidly and often exceed U.S. government tolerance levels. Pulses of elevated carbon monoxide and depleted oxygen levels also occasionally enter the cave. Active speleogenesis occurs in this cave, which is forming in a small block of Lower Cretaceous limestone adjacent to a fault. Atmospheric hydrogen sulfide combines with oxygen and water to form sulfuric acid, probably through both biotic and abiotic reactions. The sulfuric acid dissolves the limestone bedrock and forms gypsum, which is readily removed by active stream flow. In addition, carbon dioxide from the reaction as well as the spring water and cave atmosphere combines with water. The resultant carbonic acid also dissolves the limestone bedrock. A robust and diverse ecosystem thrives within the cave. Abundant, chemoautotrophic microbial colonies are ubiquitous and apparently act as the primary producers to the caves ecosystem. Microbial veils resembling soda straw stalactites, draperies, and u-loops suspended from the ceiling and walls of the cave produce drops of sulfuric acid with pH values of <0.5-3.0 0.1. Copious macroscopic invertebrates, particularly midges and spiders, eat the microbes or the organisms that graze on the microbes. A remarkably dense population of fish, Poecilia mexicana, fill most of the stream. The fish mostly eat bacteria and midges. Participants in an ancient, indigenous Zoque ceremony annually harvest the fish in the spring to provide food during the dry season.

Results 31 to 45 of 182
You probably didn't submit anything to search for