Search in KarstBase
![]() |
![]() |
Recent acquisition of twenty marine seismic-reflection profiles suggests a hypogenic karst origin for the Key Biscayne sinkhole located on the seafloor of Miami Terrace at the southeastern part of Florida Platform. Analysis of the seismic-reflection data strongly suggest the submarine sinkhole was produced by dissolution and collapse of Plio(?)-Pleistocene age carbonate strata. A complex fault system that includes compres-sional reverse faults underlies the sinkhole, providing a physical system for the possible exchange of groundwater with the sinkhole. One seismic profile is suggestive of a mas-ter feeder pipe beneath the sinkhole. The feeder pipe is characterized by seismic-reflection configurations that resemble megabreccia and stratal collapse. The sinkhole is located at a depth of about 365 m below sea level. The record of sea-level change dur-ing the Plio(?)-Pleistocene and amount of subsidence of the Florida Platform during this span of time indicates that the sinkhole has always been submerged at a water depth of about 235 m or more. Thus, the near-surface epigenic karst paradigm can be ruled out. Possible hypogenic models for sinkhole formation include ascending fluids along the fault system, such as, dissolution related to the freshwater/saltwater mixing at a regional groundwater discharge site, or processes related to gases derived from gener-ation of hydrocarbons within deep Mesozoic strata. Hydrocarbon-related karstification provides several possible scenarios: (1) oxidation of deep oil-field derived hydrogen sulfide at or near the seafloor to form sulfuric acid, (2) reduction of Cretaceous or Paleocene anhydrite or both by oil-field methane to form hydrogen sulfide and later oxidation to form sulfuric acid, and (3) carbon-dioxide charged groundwater reacting to form carbonic acid. Further, anerobic microbes could form methane outside of a hy-drocarbon reservoir that ascends through anhydrite to form hydrogen sulfide and later oxidized to sulfuric acid.
The solutional growth of karst features involves a simple mass transfer, in which the mass removed from the walls of a void equals the mass removed in solution by flowing water. Mass removed = volume rock density, and mass in solution = discharge solute concentration. Therefore (e.g., in a solution conduit) the rate of volume increase = discharge gain in dissolved load time / rock density. Density is essentially con-stant, so conduit size depends only on the cumulative values of discharge, dissolution rate, and time. All three are essential, and all are equally important.
Discharge in a conduit depends on catchment area and water balance; and the distribu-tion of water among all solution conduits depends on hydraulic variables and conduit geometry. Dissolution rate varies with rock type, undersaturation, and solution kinetics, the last of which can be determined by laboratory and field measurements. Together, they provide a tool for quantifying the local geomorphic history.
These relationships seem simple, but applying them quantitatively is complex. This requires a finely divided 2- or 3-dimensional grid in which each segment varies in dis-charge and dissolution rate within each of many small time increments. Computer modelers use this approach to simulate conduit growh; but the results depend on the specific boundary conditions of the model.
It is more challenging to use this concept intuitively to solve real field problems, where the variables are only partly understood. In this case, one must show that the water source, dissolution rate, and available time are all great enough to account for the ob-served solution features. All three variables are closely linked by a web of interactive processes, all of which can be expressed quantitatively. Whether the goal is to under-stand what is already known, or to predict the unknown, this approach provides a solid basis for interpreting karst systems.
Initiation and development of karstification requires a continuous flushing of pore water in equilibrium with carbonate minerals. Under confined flow conditions, the energy required for pore water transport is supplied by external pressure sources in addition to the by earth’s gravity. Earth tides and water loads over the confined flow system are the main sources of external pressure that drives the pore water. Earth tides, created by the sum of the horizontal components of tide generation forces of moon and sun, causes expansion and contraction of the crust in horizontal direction. Water load on top of the confined flow system causes vertical loading/unloading and may be in the form of recharge load or ocean loading in the inland and sub-oceanic settings, respectively. Increasing and decreasing tide generating force results in pore water transport in the confined system by means of contraction and expansion, respectively. Since these forces operate in perpendicular directions, pore water flushing by earth tides becomes less effective when water load on top of the confined flow system increases. Temporal variation of freshwater content in a submarine cave is presented as an example of groundwater discharge driven by earth tides and recharge load.
![]() |
![]() |