Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That limestone pavement is 1. a level, or gently inclined, bare limestone surface scored and fretted by karren. the stripping of soil or cover rocks to expose the bare rock pavement is a glacial process, and the development of the karren - both the dissolutional enlargement of the joints and also the dissolutional carving of runnels - is largely post-glacial. limestone pavements are characteristic features of glaciokarst and occur extensively in the north of england, in the burren of county clare in ireland and on many high alpine limestones [9]. 2. a bare plane surface of limestone, parallel to the bedding, commonly divided into blocks (clints, flachkarren) by solutionally widened joints (grikes, kluftkarren), and pitted by solution pans [10]. 3. a glaciokarstic landform, produced on a glacially planed limestone surface which has subsequently become dissected into blocks (clints or dalles) by solutionenlargement of vertical joints [19]. 3. horizontal or sloping platforms of bare limestone whose surface usually coincides with bedding-plane partings of the rock; often eroded into clint and grikes rock forms [20]. synonyms: (french.) plateforme calcaire; (german.) kalk plattform, limestone pavement; (greek.) karstikon lithostroton; (spanish.) lapiaz entrecruzado; (turkish.) kirectasi dosemesi. see also clints; grikes; karrenfeld.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for basel (Keyword) returned 42 results for the whole karstbase:
Showing 31 to 42 of 42
New insights into the carbon isotope composition of speleothem calcite: An assessment from surface to subsurface, 2012, Meyer, Kyle William

The purpose of this study was to provide new insights into the interpretation of speleothem (cave calcite deposit) δ13C values. We studied two caves in central Texas, which have been actively monitored for over 12 years. We compared δ13C values of soil CO2 (δ13Cs), cave drip water (δ13CDIC), and modern cave calcite (δ13Ccc). Measured average δ13C values of soil CO2 were -13.9 ± 1.4‰ under mixed, shallowly-rooted C3-C4 grasses and were -18.3 ± 0.7‰ under deeply-rooted ashe juniper trees (C3). The δ13CDIC value of minimally-degassed drip water in Natural Bridge Caverns was -10.7 ± 0.3‰. The carbon isotope composition of CO2 in equilibrium with this measured drip water is -18.1 ± 0.3‰. The agreement between juniper soil CO2 and drip water (within ~0.2‰) suggests that the δ13C value of drip water (δ13CDIC) that initially enters the cave is controlled by deeply-rooted plants and may be minimally influenced by host-rock dissolution and/or prior calcite precipitation (PCP). At Inner Space Caverns, δ13CDIC values varied with vegetation above the drip site, distance from the cave entrance, and distance along in-cave flow paths. Whereas CO2 derived from deeply-rooted plants defines the baseline for drip water δ13CDIC entering the caves, kinetic effects associated with the degassing of CO2 and simultaneous precipitation of calcite account for seasonal variability in δ13CDIC and δ13Ccc. We documented increases in δ13CDIC at a rate of up to 0.47‰/hour during the season of peak degassing (winter), suggesting that δ13CDIC variations may be controlled by total elapsed time of CO2 degassing from drip water (Ttotal). We also observed seasonal shifts in the δ13C values of modern calcite grown on glass substrates that are correlated with shifts in drip water δ13CDIC values and drip-rate. Therefore, we suggest that increased aridity at the surface above a given cave results in, slower drip-rates, higher Ttotal, and therefore higher δ13CDIC values. We propose that large variability (>2‰) in speleothem δ13Ccc values dominantly reflect major vegetation changes, and/or increasing Ttotal by slowing drip-rates. Based on these findings, variability in speleothem carbon isotope records may serve as a proxy for paleoaridity and/or paleovegetation change.


New insights into the carbon isotope composition of speleothem calcite : an assessment from surface to subsurface, 2012, Meyer, Kyle William

The purpose of this study was to provide new insights into the interpretation of speleothem (cave calcite deposit) δ13C values. We studied two caves in central Texas, which have been actively monitored for over 12 years. We compared δ13C values of soil CO2 (δ13Cs), cave drip water (δ13CDIC), and modern cave calcite (δ13Ccc). Measured average δ13C values of soil CO2 were -13.9 ± 1.4‰ under mixed, shallowly-rooted C3-C4 grasses and were -18.3 ± 0.7‰ under deeply-rooted ashe juniper trees (C3). The δ13CDIC value of minimally-degassed drip water in Natural Bridge Caverns was -10.7 ± 0.3‰. The carbon isotope composition of CO2 in equilibrium with this measured drip water is -18.1 ± 0.3‰. The agreement between juniper soil CO2 and drip water (within ~0.2‰) suggests that the δ13C value of drip water (δ13CDIC) that initially enters the cave is controlled by deeply-rooted plants and may be minimally influenced by host-rock dissolution and/or prior calcite precipitation (PCP). At Inner Space Caverns, δ13CDIC values varied with vegetation above the drip site, distance from the cave entrance, and distance along in-cave flow paths. Whereas CO2 derived from deeply-rooted plants defines the baseline for drip water δ13CDIC entering the caves, kinetic effects associated with the degassing of CO2 and simultaneous precipitation of calcite account for seasonal variability in δ13CDIC and δ13Ccc. We documented increases in δ13CDIC at a rate of up to 0.47‰/hour during the season of peak degassing (winter), suggesting that δ13CDIC variations may be controlled by total elapsed time of CO2 degassing from drip water (Ttotal). We also observed seasonal shifts in the δ13C values of modern calcite grown on glass substrates that are correlated with shifts in drip water δ13CDIC values and drip-rate. Therefore, we suggest that increased aridity at the surface above a given cave results in, slower drip-rates, higher Ttotal, and therefore higher δ13CDIC values. We propose that large variability (>2‰) in speleothem δ13Ccc values dominantly reflect major vegetation changes, and/or increasing Ttotal by slowing drip-rates. Based on these findings, variability in speleothem carbon isotope records may serve as a proxy for paleoaridity and/or paleovegetation change.


Characterization of quaternary tufas in the Serra do Andr Lopes karst, southeastern Brazil , 2012, Filho William Sallun, Almeida Luis Henrique Sapiensa, Boggiani Paulo Cesar, Karmann Ivo

Active tufas in the form of waterfalls and dams occur along drainage channels in the Serra do André Lopes region (State of São Paulo, southeastern Brazil) and are associated with the karst system that developed on a dolomitic plateau with a superhumid subtropical climate. The predominance of autogenic waters enables the groundwater to become enriched in calcium carbonate, with low terrigenous sediment content. The tufas that were studied are composed of calcite and have high calcium contents and low magnesium contents. Eroded tufa beds that originate from changes in the position of fluvial channels or river flow rates also occur in this region. In the Sapatú deposit, phytohermal tufas with complex morphologies are arranged in levels constituting various temporally repeated sequences that were deposited between 10,570 and 4,972 cal years BP. In the Frias deposit, distal fluvial deposits of tufa are massive with a relatively greater quantity of terrigenous material and show evidence of dissolution and reprecipitation. The base of this deposit is composed of a cemented breccia dated at 25,390 years BP, which is younger than the overlying tufas (>42,000 years BP). In the two deposits, the levels of terrigenous sediments (quartz sand and lithic pebbles) and terrestrial gastropod shells are interpreted as phases of increased flow rate of rivers during intervals of higher rainfall.

 


Characterization of quaternary tufas in the Serra do Andr Lopes karst, southeastern Brazil , 2012, William Sallun Filho, Luis Henrique Sapiensa Almeida, Paulo Cesar Boggiani, Ivo Karmann

Active tufas in the form of waterfalls and dams occur along drainage channels in the Serra do André Lopes region (State of São Paulo, southeastern Brazil) and are associated with the karst system that developed on a dolomitic plateau with a superhumid subtropical climate. The predominance of autogenic waters enables the groundwater to become enriched in calcium carbonate, with low terrigenous sediment content. The tufas that were studied are composed of calcite and have high calcium contents and low magnesium contents. Eroded tufa beds that originate from changes in the position of fluvial channels or river flow rates also occur in this region. In the Sapatú deposit, phytohermal tufas with complex morphologies are arranged in levels constituting various temporally repeated sequences that were deposited between 10,570 and 4,972 cal years BP. In the Frias deposit, distal fluvial deposits of tufa are massive with a relatively greater quantity of terrigenous material and show evidence of dissolution and reprecipitation. The base of this deposit is composed of a cemented breccia dated at 25,390 years BP, which is younger than the overlying tufas (>42,000 years BP). In the two deposits, the levels of terrigenous sediments (quartz sand and lithic pebbles) and terrestrial gastropod shells are interpreted as phases of increased flow rate of rivers during intervals of higher rainfall.

 


Stone Forests and Their Rock Relief, 2013, Knez M. , Slabe T.

Stone forests are unique karst surface landforms which range from several dozen to hundreds of square kilometers, and their distinctiveness is reflected in the number of denominations in different parts of the world including, for example, shilintsingy, and assegai. Diverse examples of stone forests show that the shape of the pillars, as tall as up to 100 m, is mainly the consequence of the distribution and density of fissures in the rock, its stratification, and different rock strata composition. We currently divide stone forests into three types: subsoil forests, uncovered forests, and bare forests. The rock forms on the pillars are according to their development divided into subcutaneous forms, forms shaped by rainwater and composed rock forms. The largest stone forests occur in tropical and subtropical conditions where corrosion of rock is the dominant factor and mechanical weathering is not pronounced. The Lunan stone forests developed from underground karren.


Morphology of Speleothems in Primary (Lava-) and Secondary Caves, 2013, Kempe, S.

 

Caves are defined as natural underground cavities (potentially) accessible by humans. They are decorated by various forms of speleothems that have always fascinated the human explorer. Caves are divided into primary and secondary caves, that is, formed with, or long after the deposition of the rocks containing them. The largest group of primary caves is that formed by flowing lava, whereas the largest group of secondary caves is that formed in limestone. Both display specific forms of speleothems. Although primary caves can contain primary speleothems composed of the rock that formed the cave as well as secondary speleothems formed by later deposition of minerals, secondary caves in contrast contain only secondary mineral speleothems. Rock- and mineral-composed speleothems commonly have similar morphology, determined by gravity, that is, stalactites and stalagmites. However, both primary and secondary speleothems also display forms that are specific to them. Rock speleothems are composed of basalt, whereas secondary speleothems can be composed of over 250 different minerals.

In this chapter, we explore differences and similarities of primary rock- and secondary mineral-speleothems and discuss processes of their formation.


Solutional Weathering and Karstic Landscapes on Quartz Sandstones and Quartzite, 2013, Wray, R. A. L.

Landscapes on highly quartzose bedrock that exhibit almost identical scale and morphology to those on karstified limestones occur under a range of climates and on most continents. These include ruiniform towers, grikes, stone cities, caves, dolines, smaller surface karren, and silica speleothems.

However, these rocks are much less soluble than most carbonates, and the weathering processes are quite different. However, because chemical solution is demonstratively a critical component in the genesis of these landforms, they may be regarded as karst. This chapter summarizes the processes of karstification in quartz sandstones and then reviews the incidence of these landforms around the world.


La Serreta endokarst (SE Spain): a sustainable value?, 2013, Asencio A. D. , Espinosa T.

La Serreta endokarst (SE Spain), which UNESCO declared a World Heritage Site in 1998, was considered a sanctuary with cave art and one of the most important archaeological sites in the Mediterranean region for both the remains it hosts and the spectacular karstic landscape at the site.

To coincide with the 40th anniversary of its discovery, the La Serreta cave-chasm was adapted for public use with the intention of showing visitors the remains, which date back to prehistoric times. The solution included attempts to minimize contact with the valuables in the cave in order to alter the existing remains as little as possible and to make good use of the magnificent interpretative conditions of such a unique place by showing the spectacular views over the Los Almadenes canyon, where the Segura River flowed, which is now a viewpoint over the void.

In order to determine the sustainability of the endokarst, the Karstic Sustainability Index (KSI) was applied as a standard measure of sustainable development practices in karstic environments, which employs indicators for the three domains: use of social, economic and environmental resources. By applying this index, La Serreta endokarst was found to be progressing towards the sustainable management of karst resources.

 
 

Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns, 2015,

Speleogenesis is the development of well-organized cave systems by fluids moving through fissures of a soluble rock. Epigenic caves induced by biogenic CO2 soil production are dominant, whereas hypogenic caves resulting from uprising deep flow not directly connected to adjacent recharge areas appear to be more frequent than previously considered. The conceptual models of epigenic cave development moved from early models, through the “four-states model” involving fracture influence to explain deep loops, to the digital models demonstrating the adjustment of the main flow to the water table. The relationships with base level are complex and cave levels must be determined from the elevation of the vadose-phreatic transitions. Since flooding in the epiphreatic zone may be important, the top of the loops in the epiphreatic zone can be found significantly high above the base level. The term Paragenesis is used to describe the upward development of conduits as their lower parts fill with sediments. This process often records a general baselevel rise. Sediment influx is responsible for the regulation of long profiles by paragenesis and contributes to the evolution of profiles from looping to water table caves. Dating methods allow identification of the timing of cave level evolution. The term Ghost-rock karstification is used to describe a 2-phase process of speleogenesis, with a first phase of partial solution of rock along fractures in low gradient conditions leaving a porous matrix, the ghost-rock, then a second phase of mechanical removing of the ghost-rock mainly by turbulent flow in high gradient conditions opening the passages and forming maze caves. The first weathering phase can be related either to epigenic infiltration or to hypogenic upflow, especially in marginal areas of sedimentary basins. The vertical pattern of epigenic caves is mainly controlled by timing, geological structure, types of flow and base-level changes. We define several cave types as (1) juvenile, where they are perched above underlying aquicludes; (2) looping, where recharge varies greatly with time, to produce epiphreatic loops; (3) water-table caves where flow is regulated by a semi-pervious cover; and (4) caves in the equilibrium stage where flow is transmitted without significant flooding. Successive base-level drops caused by valley entrenchment make cave levels, whereas baselevel rise is defined in the frame of the Per ascensum Model of Speleogenesis (PAMS), where deep passages are flooded and drain through vauclusian springs. The PAMS can be active after any type of baselevel rise (transgression, fluvial aggradation, tectonic subsidence) and explains most of the deep phreatic cave systems except for hypogenic.

The term Hypogenic speleogenesis is used to describe cave development by deep upflow independent of adjacent recharge areas. Due to its deep origin, water frequently has a high CO2-H2S concentration and a thermal anomaly, but not systemati­cally. Numerous dissolution processes can be involved in hypogenic speleogenesis, which often include deep-seated acidic sources of CO2 and H2S, “hydrothermal” cooling, mixing corrosion, Sulfuric Acid Speleogenesis (SAS), etc. SAS particularly involves the condensation-corrosion processes, resulting in the fast expansion of caves above the water table, i.e. in an atmo­spheric environment. The hydrogeological setting of hypogenic speleogenesis is based on the Regional Gravity Flow concept, which shows at the basin scales the sites of convergences and upflows where dissolution focuses. Each part of a basin (mar­ginal, internal, deep zone) has specific conditions. The coastal basin is a sub-type. In deformed strata, flow is more complex according to the geological structure. However, upflow and hypogenic speleogenesis concentrate in structural highs (buried anticlines) and zones of major disruption (faults, overthrusts). In disrupted basins, the geothermal gradient “pumps” the me­teoric water at depth, making loops of different depths and characteristics. Volcanism and magmatism also produce deep hypogenic loops with “hyperkarst” characteristics due to a combination of deep-seated CO2, H2S, thermalism, and microbial activity. In phreatic conditions, the resulting cave patterns

can include geodes, 2–3D caves, and giant ascending shafts. Along the water table, SAS with thermal air convection induces powerful condensation-corrosion and the development of upwardly dendritic caves, isolated chambers, water table sulfuricacid caves. In the vadose zone, “smoking” shafts evolve under the influence of geothermal gradients producing air convectionand condensation-corrosion.

Likely future directions for research will probably involve analytical and modeling methods, especially using isotopes, dating, chemical simulations, and field investigations focused on the relationships between processes and resulting morphologies.


Results 31 to 42 of 42
You probably didn't submit anything to search for