Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That elasticity is the property of a material that allows the material to return to its original form or condition after the applied force has been removed.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for dissolution rates (Keyword) returned 45 results for the whole karstbase:
Showing 31 to 45 of 45
Calcite dissolution kinetics and solubility in Na-Ca-Mg-Cl brines of geologically relevant composition at 0.1 to 1 bar pCO2 and 25 to 80°C. Doctoral dissertation, Texas A&M University. , 2005, Gledhill, Dwight Kuehl

Sedimentary basins can contain close to 20% by volume pore fluids that are commonly classified as brines. These fluids can become undersaturated with respect to calcite as a result of processes such as migration, dispersive mixing, or anthropogenic injection of CO2. This study measured calcite solubility and dissolution rates in geologically relevant Na-Ca-Mg-Cl synthetic brines (35 to 200 g L-1 TDS). In brines < 50 g L-1 TDS, the EQPITZER calculated calcium carbonate ion activity product (IAP) at steady-state was in reasonable agreement (±10%) with the thermodynamic solubility constant for calcite (Kc). However, the IAP systematically exceeded Kc in more concentrated brines. The deviation was strongly correlated with calcium concentration and also was observed in magnesium-free solutions. This is interpreted as an uncertainty in the carbonate ion activity coefficient, and minor adjustment in stoichiometric association constants (K*M2+CO30) for the CaCO30 or MgCo30 ion pairs would correct for the error. The dissolution rate dependency on brine composition, pCO2 (0.1 to 1 bar), and temperature (25.0 to 82.5 °C) was modeled using the empirical rate equation ()nkRΩ−=1 where R is the rate, k and n are empirical fitting terms, and Ω the degree of disequilibrium with respect to calcite. When Ω was defined relative to an apparent kinetic solubility, n could be assumed first-order over the range of Ω investigated (Ω = 0.2 to 1.0). Rates increased with increasing pCO2 as did the sensitivity to brine concentration. At 0.1 bar, rates were nearly independent of concentration (k = 13.0 ±2.0 x 10-3 moles m-1 hr-1). However, at higher CO2 partial pressures rates became composition dependent and the rate constant, k, was shown to be a function of temperature, pCO2, ionic strength, and calcium and magnesium activity. The rate constant (k) can be estimated from a multiple regression (MR) model of the form k = B0 + B1(T) + B2(pCo2) + B4(aCa2+) + B5(aMg2+). A relatively high activation energy (Ea = 20 kJ mol-1) was measured, along with a stirring rate independence suggesting the dissolution is dominated by surface controlled processes at saturation states Ω > 0.2 in these calcium-rich brines. These findings offer important implications to reaction-transport models in carbonate-bearing saline reservoirs.


Cave Geology, 2007, Palmer A. N.
Cave Geology is the definitive book on the subject by an internationally recognized authority. It can be easily understood by non-scientists but also covers a wide range of topics in enough detail to be used by advanced researchers. Illustrated with more than 500 black-and-white photographs and 250 diagrams and maps, this book is dedicated to anyone with an interest in caves and their origin. Topics include: CONTENTS Preface 1 Speleology the science of caves Cave types Cave exploring Nationwide speleological organizations Searching for caves Cave mapping Preparation of a cave map Cave science Underground photography Show caves Cave preservation and stewardship 2 Cave country Geologic time Landscape development Surface karst features Paleoleokarst Pseudokarst The scale of karst features Distribution of karst and caves The longest and deepest known caves 3 Cavernous rocks Rock types Soils and sediments Stratigraphy Highly soluble rocks Rock structure Rock and mineral analysis A brief guide to rock identification 4 Underground water in karst Types of underground water Vadose flow patterns Phreatic flow patterns Aquifers Nature of the karst water table The freshwater-seawater interface Groundwater hydraulics Flow measurements Use of flow equations in cave interpretation Measuring the flow of springs and streams Groundwater tracing Interpreting groundwater character from tracer tests and flood pulses Quantitative dye tracing 5 Chemistry of karst water Simple dissolution Dissoltion of limestone and dolomite How much rock has dissolved? pH Undersaturation and supersaturation Epigenic and hypogenic acids Chemical interactions Dissolution rates Dissolution of poorly soluble rocks Microbial effects on chemistry Isotopes and their use Analysis of spring chemistry A chemical cave tour Chemical field studies 6 Characteristics of solution caves Cave entrances Passage types Passage terminations Cave rooms Cave levels Cave patterns Minor solution features in caves Interpreting flow from scallops Cave sediments Bedrock collapse Cave biology 7 Speleogenesis: the origin of caves Basic concepts Development of ideas about cave origin Comprehensive views of cave origin Rates of cave enlargement Insight from computer modeling Life cycle of a solution cave 8 Control of cave patterns by groundwater recharge Sinkhole recharge: branchwork caves The problem of maze caves Floodwater caves Caves formed by diffuse flow Hypogenic caves Polygenetic caves Influence of climate 9 Influence of geology on cave patterns Distribution of soluble rocks Influence of rock type Influence of geologic structure Relation of caves to landscape evolution A guide to cave patterns 10 Cave minerals Origin and growth of cave minerals Origin of common cave minerals Speleothem types Speleothem growth rates Speleothem decay 11 Caves in volcanic rocks Volcanic processes and landscapes Types of lava caves Origin and character of lava-tube caves Speleogens and speleothems in lava caves Time scale of lava caves 12 Cave meteorology and internal weathering Composition of cave air Cave temperatures Air movement Evaporation and condensation Weathering in the cave atmosphere Chemical zones in air-filled caves 13 Caves and time Relative and numerical ages Determining cave ages Studies of past climates Caves through the ages 14 Geologic studies of caves Field mapping Calibrating survey instruments Geologic interpretions Testing interpretations for validity Detailed analysis of a cave Further goals 15 Application of cave geology to other geosciences The problem of sampling bias Water supply Engineering applications Land management Interpretation of geologic processes Petroleum geology Mining Scientific frontiers The limits of discovery Glossary References Index Conversion between U.S. and metric units

Variation in rates of Karst processes, 2007, Palmer, A. N. ,

The development of karst is not a linear process but instead takes place at irregular rates that typically include episodes of stagnation and even retrograde processes in which the evolution toward maturity is reversed. The magnitude and nature of these irregularities differs with the length of time considered. Contemporary measurements in caves show fluctuations in dissolution rate with changes in season, discharge, and soil conditions. Dissolution is sometimes interrupted by intervals of mineral deposition. Observed dissolution rates can be extrapolated to obtain estimates of long-term growth of a solution feature. But this approach is flawed, because as the time scale increases, the rates are disrupted by climate changes, and by variations that are inherent within the evolutionary history of the karst feature (e.g., increased CO2 loss from caves as entrances develop). At time scales of 105-106 years, karst evolution can be interrupted or accelerated by widespread fluctuations in base level and surface river patterns. An example is the relation between karst and the development of the Ohio River valley in east-central U.S.A. At a scale of 106-108 years, tectonic and stratigraphic events cause long-term changes in the mechanism and style of karst development. For example, much of the karst in the Rocky Mountains of North America has experienced two phases of pre-burial Carboniferous karst, mineral accretion during deep burial from Permian to Cretaceous, extensive cave development during Paleocene-Eocene uplift, and stagnation and partial mineral deposition caused by late Tertiary aggradation. At such large time scales, it is difficult to determine rates of karst development precisely, if at all. Instead it is appropriate to divide the evolutionary history into discrete episodes that correlate with regional tectonic and stratigraphic events.


Time scales in the evolution of solution porosity in porous coastal carbonate aquifers by mixing corrosion in the saltwater-freshwater transition zone, 2007, Dreybrodt W. , Romanov D.

Dissolution of calcium carbonate in the saltwater-freshwater mixing zone of coastal carbonate aquifers up to now has been treated by coupling geochemical equilibrium codes to a reactive- transport model. The result is a complex nonlinear coupled set of differential transport-advection equations, which need high computational efforts. However, if dissolution rates of calcite are sufficiently fast, such that one can assume the solution to be in equilibrium with respect to calcite a highly simplified modelling approach can be used. To calculate initial changes of porosity in the rock matrix one only needs to solve the advection-transport equation for salinity s in the freshwater lens and its transition zone below the island. Current codes on density driven flow such as SEAWAT can be used. To obtain the dissolution capacity of the mixed saltwater-freshwater solutions the calcium equilibrium concentration ceq(s) is obtained as a function of salinity by PHREEQC-2. Initial porosity changes can then be calculated by a simple analytical expression of the gradient of the spatial distribution s(x, y) of salinity, the distribution of flow fluxes q(x,y) and the second derivative of the calcium equilibrium concentration ceq(s) with respect to salinity s. This modelling approach is employed to porosity evolution in homogeneous and heterogeneous carbonate islands and coastal aquifers. The geometrical patterns of porosity changes and the reasons of their origin will be discussed in detail. The results reveal initial changes of porosity in the order of several 10-6 per year. This places the time scale of cavern evolution to orders from several tens of thousands to a hundred thousand years.


Physics and chemistry of dissolution on subaerialy exposed soluble rocks by flowing water films, 2007, Dreybrodt W. , Kaufmann G.

The basic process active in the formation of subaerial features on karst rocks is chemical dissolution of limestone or gypsum by water films flowing on the rock surface. The dissolution rates of limestone and gypsum into thin films of water in laminar flow are given by F = .(ceq-c), where (ceq-c) is the difference of the actual concentration c in the water film and the equilibrium concentration ceq with respect to the corresponding mineral. Whereas for gypsum . is determined by molecular diffusion the situation is more complex for limestone. Experiments are presented, which show that for high undersaturation, c<0.3ceq, the rate law is F = .( 0.3ceq-c) ,and . becomes higher by about a factor of ten than for the rates at c>0.3ceq. These rate laws are used to calculate denudation rates on bare rock surfaces exposed to rainfall with differing intensity. The estimations are in reasonable agreement to field data. Starting from the experiments on the formation of Rillenkarren on gypsum performed by Glew and Ford (1980), we suggest a new relation between their length from the crest to the “Ausgleichsfläche” and the inclination of the rock surface. This is also applied to field data of Rillenkarren on limestone provided by J. Lundberg and A. Gines. In view of the many parameters influencing the formation of Rillenkarren these correlations can be considered as satisfactory.


Conduit evolution in deep-seated settings: Conceptual and numerical models based on field observations, 2008, Rehrl C. , Birk S. , Klimchouk A. B.

To examine the interrelation between hydrogeological environment and conduit development in deep-seated settings, a conceptual model is tested by numerical modeling. Based on field observations, simplified model settings are designed and crucial parameters are varied. A coupled continuum-pipe flow model is employed for simulating conduit development within the soluble unit of a multilayer aquifer system. In agreement with field observations, the evolving cave patterns are characterized by pronounced horizontal passages and multiple vertical conduits at the bottom of the soluble unit but only few at the top. The frequency distribution of conduit diameters is found to be bimodal if the permeability of the rock formation is sufficiently high to allow competitive conduit development governed by the feedback between increasing flow and dissolution rates. This feedback, however, is suppressed in low-permeability formations. As a consequence, conduit development is uniform rather than competitive.


Self-Organized Permeability in Carbonate Aquifers, 2009, Worthington S. , Ford D.

Advances over the past 40 years have resulted in a clear understanding of how dissolution processes in carbonate rocks enhance aquifer permeability. Laboratory experiments on dissolution rates of calcite and dolomite have established that there is a precipitous drop in dissolution rates as chemical equilibrium is approached. These results have been incorporated into numerical models, simulating the effects of dissolution over time and showing that it occurs along the entire length of pathways through carbonate aquifers. The pathways become enlarged and integrated over time, forming self-organized networks of channels that typically have apertures in the millimeter to centimeter range. The networks discharge at point-located springs. Recharge type is an important factor in determining channel size and distribution, resulting in a range of aquifer types, and this is well demonstrated by examples from England. Most carbonate aquifers have a large number of small channels, but in some cases large channels (i.e., enterable caves) can also develop. Rapid velocities found in ground water tracer tests, the high incidence of large-magnitude springs, and frequent microbial contamination of wells all support the model of selforganized channel development. A large majority of carbonate aquifers have such channel networks, where ground water velocities often exceed 100 m/d.


SIMULATING THE DEVELOPMENT OF SOLUTION CONDUITS IN HYPOGENE SETTINGS, 2009, Rehrl C. , Birk S. , Klimchouk A. B.

Karst aquifers develop where an enlargement of fractures due to dissolution creates highly permeable conduits. These conduits are embedded in the much less permeable fissured system of the surrounding rock. The hydrogeological characterisation of these heterogeneous, dualistic flow systems requires a deep understanding of the processes involved in karstification. During the last two decades many numerical models have been developed to simulate conduit evolution in karst terrains and to understand and analyze the mechanisms of speleogenesis. In this study, conduit development within a soluble unit of a multi-layer aquifer system is examined by process-based numerical modeling. The dual flow system is adequately represented by a coupled continuum-pipe flow model; the flow model is coupled to a module calculating dissolution rates and the corresponding widening of conduits depending on flow conditions. The simplified model scenarios are largely based on field observations compiled from the gypsum karst terrain of the Western Ukraine. It is demonstrated that the hydraulic conductivity of the rock formation is a crucial factor that controls the frequency distribution of conduit diameters in hypogene speleogenesis. If the permeability of the rock formation is sufficiently high, conduit development is found to be competitive and leads to bimodal aperture distributions. Otherwise flow in low-permeability formations is suppressed and as a consequence, there is a smooth transition from scarcely developed proto-conduits to well-developed conduits rather than a clear and distinct separation. This work further examines the influence of the variability of the initial apertures on dissolutional growth of fissures and the evolving cave patterns. The initial apertures were not spatially correlated and log normally distributed. The influence of the aperture variability was investigated in several scenarios. It is found that in an ensemble average sense the degree of heterogeneity determines the temporal development of the cave patterns, i.e. higher aperture variability generally decelerates the karstification process. The aperture variability, however, appears to be of minor relevance regarding the general structure and geometric properties of the evolving cave patterns.


Peculiarities of development and distribution of karst features in evaporite successions of the Western Caucasus, 2009, Ostapenko, A. A. , Kritskaya, O. Yu.

Karst landforms are well represented in the upper Jurassic evaporite rocks of the Western Caucasus. Upper part of evaporite successions is represented by gypsum, and lower parts are composed with anhydrite. Gypsum rocks extend by a narrow band to the north from the Skalisty (Rocky) Ridge. Maximum thickness of gypsum successions is observed at the area between rivers Belaya and Bolshoy Zelenchouk. Most of karst landforms occur here.

Climate conditions are favorable for karst process. The amount of precipitation is about 600-900 mm per year. Dissolution rates are about 500-800 m3 year/km2.

Karst features at the surface are presented by dolines, blind valleys and depressions. Dolines with diameters of 60-70 m are most common. Karrens are developed under the soil. Positive karst landforms are presented by cone-like hills, arches and bridges. Some residual hills are composed by calcite dripstones of ancient caves, buried under the soil. Shelter caves are related to active or old destructed caves.

Underground karst  features are mainly presented by through caves, accessible from sink point to resurgence. There is known 9 caves longer than 500 m. All caves longer than 1 km are situated in the area between Khodz and Urup rivers. Passage shapes are stretched vertically, with some terraces.  Cave deposits are presented mostly by gravel, breakdown clasts and dripstones (mostly calcite).

Cave regions were distinguished by areas between rivers that drain karst massives. We analyzed distribution of caves and their parameters at selected areas. Some of cave regions are well-explored.

Cave exploration and protection are important because some caves are situated at the areas where gypsum mining is planned, so that caves can be destroyed.


Karstification in unconfined limestone aquifers by mixing of phreatic water with surface water from a local input: A model, 2010, Gabrovš, Ek F. , Dreybrodt W.

When water from the surface of a limestone plain seeps down through the fractured rock to the water table of an unconfined aquifer with low hydraulic gradient containing water saturated with respect to calcite, mixing of these waters causes renewed aggressivity. A model is presented, which describes the evolution of karstification by dissolutional widening of the fractures downgradient from the local input of surface water. The model couples flow in the fractures with dissolution rates. Dissolution rates are given by F = k (1 [1] c (x)/ceq)4, where c (x) is the calcium concentration at distance x from the entrance of the fracture, ceq is the equilibrium calcium concentration of the H2O–CaCO3–CO2 solution in the fracture, and k is a rate constant. The model describes two domains of waters saturated with respect to calcite at different partial pressure of CO2. At the borders of these domains the waters mix and create dissolutional widening of the fractures by mixing corrosion. A channel evolves along the border in the downgradient direction by about 100 m in 100 ky. Below this channel a zone of fractures with aperture widths up to 1 cm has originated. The change of the hydraulic conductivity in the mixing zone shifts the border of the domains, allowing the channel to grow in the downgradient direction. Below it the zone of widened fractures is invaded by saturated phreatic water and dissolution stops. This process continues at the downgradient part of the conduit. In summary, we find cave conduits evolving close to the water table, leaving significant cavernous structures below them. A variety of modelling scenarios with different choices of parameters show that this evolution is typical and changes only in details but not in its basic behaviour.


On the formation of collapse dolines: A modelling perspective, 2011, Gabrovš, Ek Franci, Stepiš, Nik Uroš,

Collapse dolines are among the most striking surface features in karst areas. Although they can be the result of different formation mechanisms, evidence suggests that large collapse dolines form due to chemical and mechanical removal of material at and below the level of groundwater. We have applied a genetic model of a two-dimensional fracture network to calculate the rate of dissolutional bedrock removal in the heavily fractured (crushed) zone intersecting a karst conduit in the phreatic zone. To account for infilling and breakdown processes in the crushed zone two simple rules were added to the basic model: 1) continuous infilling of dissolutionally created voids prevents fractures from growing beyond some limited aperture, although the dissolution proceeds, 2) discontinuous collapsing causes sudden closure of a fracture once some critical aperture has been reached. Both rules limit the transmissivity of the network and the related flow rates. Therefore, the constant head difference between the input and the output points is sustained and the flow remains distributed over the entire crushed zone. Provided that restrictions posed by the two rules permit turbulent flow, dissolution rates also remain high in the entire region. High surface area of water–rock contact and high dissolution rates result in high overall removal rates of rock from the crushed zone, one of the necessary conditions for the formation of large closed depressions. Despite the fact that the model neglects some processes and dynamics that would increase the removal rate, the results suggest that large closed depressions could form in the order of 1 million years.


Coupled Thermo-Hydro-Chemical (THC) Modeling of Hypogene Karst Evolution in a Prototype Mountain Hydrologic System, 2011, Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G.

Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths grows to a point where the permeability is large enough for the onset of buoyant convection. As a result, a multitude of buoyant convection cells form that take on a two-dimensional (2D) maze-like appearance, which could represent a 2D analog of the three-dimensional (3D) mazework pattern widely thought to be characteristic of hypogene cave systems. Although computational limitations limited us to 2D, we suggest that similar process interactions in a 3D network of fractures and faults could produce a 3D mazework.


Analysis of "standard" (Lipica) lemestone tablets and their weathering by carbonate staining and SEM imaging, a case study on the Vis island, Croatia, 2013, Krklec Kristina, Marjanac Tihomir, Perica Dražen

This paper focuses on the evolution and patterns of microscale weathering forms and dissolution rates of “standard” (Lipica) limestone tablets. Analysis of carbonate weathering using combination of methods (quantitative analysis by the weight loss of "standard" tablets, and qualitative analysis of the weathered surfaces by stained acetate peels and SEM imaging) showed that dissolution takes place not only at the surface of limestone tablets, but also along voids and cavities in limestone tablets which makes total weathering surface larger than the area of the tablet surface. Dissolution is more pronounced on the micritic calcite surfaces (due to different dissolution kinetics of carbonate minerals), resulting in lowering of the surface (calcite matrix) which causes gradual unburial and removal of authigenic dolomite grains.


The role of condensation in the evolution of dissolutional forms in gypsum caves: Study case in the karst of Sorbas (SE Spain), 2014, Gazquez F. , Calaforra J. M. , Forti P. , Waele J. D. , Sanna L.

The karst of Sorbas (SE Spain) is one of the most important gypsum areas worldwide. Its underground karst network comprises over 100 km of cave passages. Rounded smooth forms, condensation cupola and pendant-like features appear on the ceiling of the shallower passages as a result of gypsum dissolution by condensation water. Meanwhile, gypsum speleothems formed by capillarity, evaporation and aerosol deposition such as coralloids, gypsum crusts and rims are frequently observed closer to the passages floors. The role of condensation-dissolution mechanisms in the evolution of geomorphological features observed in the upper cave levels has been studied by means of long-term Micro-Erosion Meter (MEM) measurements, direct collection and analysis of condensation waters, and micrometeorological monitoring. Monitoring of erosion at different heights on gypsum walls of the Cueva del Agua reveals that the gypsum surface retreated up to 0.033 mm yr- 1 in MEM stations located in the higher parts of the cave walls. The surface retreat was negligible at the lowest sites, suggesting higher dissolution rates close to the cave ceiling, where warmer and moister air flows. Monitoring of microclimatic parameters and direct measurements of condensation water were performed in the Covadura Cave system in order to estimate seasonal patterns of condensation. Direct measurements of condensation water dripping from a metal plate placed in the central part of the El Bosque Gallery of Covadura Cave indicate that condensation takes place mainly between July and November in coincidence with rainless periods. The estimated gypsum surface lowering due to this condensation water is 0.0026 mm yr- 1. Microclimatic monitoring in the same area shows differences in air temperature and humidity of the lower parts of the galleries (colder and drier) with respect to the cave ceiling (warmer and wetter). This thermal sedimentation controls the intensity of the condensation-evaporation mechanisms at different heights in the cave.


The role of condensation in the evolution of dissolutional forms in gypsum caves: Study case in the karst of Sorbas (SE Spain), 2015, Gazquez Fernando, Calaforra José Maria, Forti Paolo, De Waele Jo, Sanna Laura

The karst of Sorbas (SE Spain) is one of the most important gypsum areas worldwide. Its underground karst network comprises over 100 km of cave passages. Rounded smooth forms, condensation cupola and pendant-like features appear on the ceiling of the shallower passages as a result of gypsum dissolution by condensation water. Meanwhile, gypsum speleothems formed by capillarity, evaporation and aerosol deposition such as coralloids, gypsum crusts and rims are frequently observed closer to the passage floors. The role of condensation–dissolution mechanisms in the evolution of geomorphological features observed in the upper cave levels has been studied by means of long-term micro-erosion meter (MEM) measurements, direct collection and analysis of condensation waters, and micrometeorological monitoring. Monitoring of erosion at different heights on gypsum walls of the Cueva del Agua reveals that the gypsum surface retreated up to 0.033 mm yr−1 in MEM stations located in the higher parts of the cave walls. The surface retreat was negligible at the lowest sites, suggesting higher dissolution rates close to the cave ceiling, where warmer and moister air flows. Monitoring of microclimatic parameters and direct measurements of condensation water were performed in the Covadura Cave system in order to estimate seasonal patterns of condensation. Direct measurements of condensation water dripping from a metal plate placed in the central part of the El Bosque Gallery of Covadura Cave indicate that condensation takes place mainly between July and November in coincidence with rainless periods. The estimated gypsum surface lowering due to this condensation water is 0.0026 mm yr−1. Microclimatic monitoring in the same area shows differences in air temperature and humidity of the lower parts of the galleries (colder and drier) with respect to the cave ceiling (warmer and wetter). This thermal sedimentation controls the intensity of the condensation–evaporation mechanisms at different heights in the cave.


Results 31 to 45 of 45
You probably didn't submit anything to search for