Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That grain shape is the geometrical aspect of grains [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for calcarenite (Keyword) returned 47 results for the whole karstbase:
Showing 31 to 45 of 47
Eogenetic karst, glacioeustatic cave pools and anchialine environments on Mallorca Island: a discussion of coastal speleogenesis, 2007, Gins A. , Gins J.

Coastal karst is characterized by special geomorphologic and hydrodynamic conditions as well as by peculiar sedimentary, geochemical, and biospeleological environments. Generally, the more distinctive karstic features produced near the coastline are strongly influenced by sea-level changes, which generate a broad set of interactions between littoral processes and karst development. The glacioeustatic rises and falls of sea level affected the littoral karst in different ways, namely: vertical and horizontal shifts in the shoreline position, changes in elevation of the local water table, and vertical displacements of the halocline. Most eogenetic karsts have been subjected over long time spans to repeated changes of a variety of vertically-zoned geochemical environments: vadose, phreatic meteoric-water, brackish mixing-waters and even marine water. Many coastal caves appear to be passively drowned by Holocene sea-level rise, and to contain glacioeustatic pools of varied size where the current water table intersects formerly air-filled chambers or passages. These coastal phreatic waters are controlled by sea level and fluctuate with tides. Significantly, features such as phreatic speleothems that are able to record ancient sea levels occur closely associated to the surface of the pools. The cave pools are brackish or even marine anchialine environments that contain remarkable communities of troglobitic stygofauna. All of these aspects can be studied in detail along the southern and eastern coast of Mallorca Island owing to the widespread outcrop of Upper Miocene calcarenites, in which the development of eogenetic karst features started approximately 6 Ma ago, at the end of Messinian times. Some outstanding coastal caves result and include the celebrated Coves del Drac (explored by E.A. Martel in 1896), the labyrinthine Cova des Pas de Vallgornera (more than 30 km in length) and the recently explored Cova de sa Gleda (whose submerged passages exceed 10 km, as shown by scuba-diving surveys). Careful observations and detailed mapping of caves in the Upper Miocene reef rocks of Mallorca permit a better understanding of the coastal speleogenetic processes involved in a typical eogenetic karst over time ranges greater than 1 Ma. The role played by recurrent glacioeustatic oscillations of sea level and the subsequent rises and falls of the water table are emphasized in our model. There are two associated mechanisms: the triggering of breakdown by the loss of buoyant support that follows each lowering of sea level (i.e., during glaciations or smaller cold events) and the later underwater solution of boulders and collapse debris (during high sea levels that correspond to interglacial events). Additionally, tidal fluctuations affecting groundwaters would enhance solutional enlargement of caves and vug-porosity connected to the sea, rather than conventional karstic flow through conduits that probably is not as important an agent in eogenetic speleogenesis.

Kryogene Calcitpartikel aus der Heilenbecker Hhle in Ennepetal (NE Bergisches Land/Nordrhein-Westfalen), 2008, Richter D. K. , Neuser R. D. , Voigt S.
Calcarenites to -rudites are present between fallen blocks in the Runde Halle of the Heilenbecker Cave in Ennepetal (NE Bergisches Land, Germany) and are mainly composed of four particle types: 1. plait sinter, 2. rhombohedral crystal sinter, 3. spherulites, 4. skeletal crystal sinter. These speleogenic particles were studied using scanning electron microscopy, cathodoluminescence microscopy and mass spectrometry (C/Oisotopes) in order to gain insights into their mode of formation. The very low 18O (6 to 16 VPDB) and 13C values (3 to 7VPDB) strongly suggest that these calcite particles formed in pools on ice during the transition from a glacial to a warm climate period. Growth of these particles apparently occurred during very slow freezing of water. After the ice had melted the cryogenic particles settled between and on the blocks of the cave.

Simultaneous karstifcation and lithifcation of aeolian calcarenite in the southwest coastal part of Western Australia produced syngenetic karstic geomorphological features, such as solution pipes, maze caves, collapsed dolines and pinnacles. $e formation of these geomorphological features was greatly inluenced by the poor cementation and matrix porosity of the calcarenite. Pinnacles, calcarenite pillars up to 5 metres tall with one or more peaks and various types of sediment layers, are most numerous and densest in an area called the Pinnacles in Nambung National Park, Western Australia. Their detailed characteristics and origin are still partially unknown and controversial. Theories suggest that the pinnacles are the final product of one or more of corrosive expansion and coalescence of solution pipes, cemented sediment surrounding the roots, cemented fill of solution pipes, products of focused cementation or remainders of tree-trunks. This article presents descriptions of pinnacles in Nambung National Park based on my feldwork and suggests a polygenetic origin for the pinnacles, with roots playing a major role. The genesis of pinnacles is far more complex than the theories presented so far.

Morphology and origin of coastal karst landforms in Miocene and Quaternary carbonate rocks along the central-western coast of Sardinia (Italy), 2009, De Waele Jo, Mucedda Mauro, Montanaro Luca

In the area of Punta Funtanas (Arbus, Central-West Sardinia) somesmall surfaces ofMiocene limestones crop out, partially covered with Quaternary calcarenites and Plio-Quaternary basalts. The biggest of these outcrops forms a fossilwave-cut shore platformof up to 50m wide with an altitude above sea level of approximately 4–5m. On this platformawide variety of dissolution landforms can be observed. Thesemorphologies are related to the influence of the seawater (zone of wave action, marine splash and spray zone, up to progressively more continental environments) and to biokarst processes (erosional action ofmarine organisms, algae andmicro-organisms) and are arranged in bands parallel to the coast, corresponding to different morphological zones.

This paper describes all the karst landforms observed in this coastal area from a morphological and genetic point of view.

Coastal cave in Bahamain eolian calcarenites: Differentiating between sea caves and flank margin caves using quantitative morphology, 2010, Waterstrat, Willapa J. , Mylroie, John E. , Owen, Athena M. And Mylroie, Joan R.

Coastal areas on carbonate islands commonly contain two types of caves: sea caves developed by wave erosion processes, and flank margin caves developed by dissolution at the edge of the fresh-water lens. Differentiating sea caves and flank margin caves in coastal settings is important, but can it be done reliably and quantitatively? Current methods use the degree of intricate wall-rock dissolution and the presence or absence of dense calcite speleothems to separate the two cave types. This study reports how analysis of cave maps creates three separate tools to differentiate coastal caves: area to perimeter ratio, entrance width to maximum width ratio, and rectangle short axis to long axis ratio. The study also presents some of the first sea cave data from eogenetic carbonate islands, specifically eolian calcarenites. The morphological and geometrical comparisons between Bahamian flank margin cave and sea cave maps using the three tools allows the two cave types to be statistically differentiated. The Bahamian sea cave data were also compared to sea cave data from California and Maine to demonstrate that Bahamian sea caves have a unique quantitative signature based on the youth and homogeneity of the host eolian calcarenite rock. The Bahamian sea cave data also indicate that sea cave formation may not be solely determined by differential rock weaknesses, as reported in the literature, but may also be a result of wave dynamics such as constructive interference.

Sand structures cemented by focussed flow in dune limestone, Western Australia, 2011, Grimes, K. G.

Pendants, pillars and concretions of cemented sand are exposed in a dune limestone cave in southwest Western Australia. These are the result of focussed flow of carbonate-saturated water through the sand in a very early stage of eogenetic diagenesis. Vertical vadose fingered flow has cemented the pillars and pendants, and horizontal phreatic flow has produced a layer of elongated concretions along a bedding plane. Later cave development has exposed the cemented sand bodies.

Eolianites and Karst Development in the Mayan Riviera, Mexico, 2011, Kelley Kristin N. , Mylroie John E. , Mylroie Joan R. , Moore Christopher M. , Collins Laura R. , Ersek Lica, Lascu Ioan, Roth Monica J. , Moore Paul J. , Passion Rex, Shaw Charles

Coastal Quintana Roo, Mexico, including islands such as Cozumel and Isla Mujeres, contains numerous ridges of Quaternary eolian calcarenite in two packages, one Pleistocene and one Holocene. The Pleistocene eolianites are recognizable in the field by well-developed terra rossa paleosol and micritic crust on the surface, containing a fossil epikarst. The foreset beds of these eolianites commonly dip below modern sea level, and fossilized plant root structures are abundant. The Holocene
eolianites lack a well-developed epikarst, and have a calcernite protosol on their surfaces. The degree of cementation, and the grain composition, are not reliable indicators of the age of Quaternary eolianites.

The Pleistocene eolianites have been previously described (e.g. Ward, 1997) as exclusively regressive-phase eolianites, formed by the regression during the oxygen isotope substages (OIS) 5a and 5c. However, certain eolianites, such as those at Playa Copal, contain flank margin caves, dissolution chambers that form by sea water/fresh water mixing in the fresh-water lens. For such mixing dissolution to occur, the eolianite must already be present. As the flank margin caves are found at elevations of 2-6 m above current sea level, the caves must have developed during the last interglacial sea-level highstand, and the eolianites could not have formed on the regression from that or younger highstands. Therefore the eolianites must be transgressive-phase
eolianites developed at the beginning of the last interglacial sea-level highstand, or either transgressive- or regressive-phase eolianites from a previous sea-level highstand that occurred earlier in the Pleistocene. There is no field evidence of oxygen isotope substage 5c or 5a eolianites as suggested by Ward (1997).

Most coastal outcrops show classic regressive–phase Pleistocene eolianites as illustrated by complex and well-developed terra rossa paleosols and epikarst, and dense arrays of fossilized plant roots. However, in addition to flank margin caves, other evidence of transgressive-phase eolianites includes notches in eolianites on the west side of Cozumel, with subtidal marine facies onlapping the notches. The absence of a paleosol between those two units indicates that the eolianite is a transgressive-phase deposit from the last interglacial. All Holocene eolianites are, by definition, transgressive-phase units.

A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy, 2011, Parise M. , Lollino P.

Natural and anthropogenic caves may represent a potential hazard for the built environment, due to the occurrence of instability within caves, that may propagate upward and eventually reach the ground surface, inducing the occurrence of sinkholes. In particular, when caves are at shallow depth, the effects at the ground surface may be extremely severe. Apulia region (southern Italy) hosts many sites where hazard associated with sinkholes is very serious due to presence of both natural karst caves and anthropogenic cavities, the latter being mostly represented by underground quarries. The Pliocene–Pleistocene calcarenite (a typical soft rock) was extensively quarried underground, by digging long and complex networks of tunnels. With time, these underground activities have progressively been abandoned and their memory lost, so that many Apulian towns are nowadays located just above the caves, due to urban expansion in the last decades. Therefore, a remarkable risk exists for society, which should not be left uninvestigated.

The present contribution deals with the analysis of the most representative failure mechanisms observed in the field for such underground instability processes and the factors that seem to influence the processes, as for example those causing weathering of the rock and the consequent degradation of its physical and mechanical properties. Aimed at exploring the progression of instability of the cavities, numerical analyses have been developed by using both the finite element method for geological settings represented by continuous soft rock mass, and the distinct element method for jointed rock mass conditions. Both the effects of local instability processes occurring underground and the effects of the progressive enlargement of the caves on the overall stability of the rock mass have been investigated, along with the consequent failure mechanisms. In particular, degradation processes of the rock mass, as a consequence of wetting and weathering phenomena in the areas surrounding the caves, have been simulated. The results obtained from the numerical simulations have then been compared with what has been observed during field surveys and a satisfactory agreement between the numerical simulations and the instability processes, as detected in situ, has been noticed.

Comment on Coastal Caves in Bahamian Eolian Calcarenites: Differentiating Between Sea Caves and Flank Margin Caves Using Quantitative Morphology, 2011, Curl, R.

Comment on Coastal Caves in Bahamian Eolian Calcarenites: Differentiating Between Sea Caves and Flank Margin Caves Using Quantitative Morphology, 2011, Mixon, B.


The lithology and structural setting of the rocks which form the island of Mallorca are magnificent bases on which karstic phenomena develop. Almost every geological period is continually represented here, from the Carboniferous to the Pleistocene (only part of the Upper Cretaceous and Lower Paleogene being absent). The approximate thickness of the stratigraphic sequence is 3,000 m in which carbonate deposits (not only limestones but also dolomites) constitute the most important lithologies. The main structure consists of thrust sheets imbricated in a NW transport direction. Such deformation took place during the alpine orogeny. Furthermore, the existence of impervious materials from the Keuper at the base of the thrust sheets, added to the imbricate thrusts system structure, cause permeable zones to remain isolated by areas of impervious material. The development during the post-orogenic phase (Late Miocene) of a carbonate reef deposition, forms a large tabular slab where the phenomena related to coastal karst have its maximum expression. Menorca, can be divided into two very distinct parts. The northern half or Tramuntana, well structured, but dominated by the presence of siliceous material from the Devonian with a couple of large slabs of Mesozoic limestones and dolomites, quite different from Migjorn, in the south, where the Late Miocene calcarenites and calcisiltites clearly dominate. Eivissa can be assimilated to the same structure of the Tramuntana mountains of Mallorca, which are almost exclusively dominated by carbonate materials, particularly the dolomites, but the limestones from the middle Triassic and the marls (Cretaceous and lower Miocene) are very abundant. Formentera is dominated at both ends of the island by sea cliffs cut on Miocene reefal limestones joined by an isthmus where Pleistocene aeolian calcarenites outcrops.

Morfologies de corrosio de la zona de mescla a les cavitats subaquatiques de la franja litoral del Llevant i Migjorn de Mallorca, 2011, Gracia F. , Clamor B. , Gamundi P. , Fornos J. J.

In Mallorca Island,  the genesis of caves and  solutional  morphologies that characterize the eogenetic endokarst of the littoral fringe attain particular  intensity within the Upper Miocene  carbonate rocks.  Dissolution processes occur preferentially  in the  mixing zone  between freshwater –of meteoric  origin– and  marine  waters, all along  the  coastal areas. The submerged passages and  chambers, existing  in the caves of Migjorn and  Llevant regions  of the island, show a high diversity of solutional  features that are  categorized into four groups  according to their dimensions, the forms they present and the genetic  processes involved. The resulting morphologies are conditioned by the existence of significant lithological differences, of textural character, within the Upper Miocene  calcarenites where  caves develop, due  to environmental variations  between the reef front facies  and  those  corresponding to lagoon  facies.  The difficul­ ties encountered when cataloguing and systematizing the primary morphologies should  be, so often, attributed  to the difficulty in ascribing solutional features to a certain typology, as there are juxtapositions of different classes, with inter­ mediate forms and different degrees of intensity in the process of dissolution.  At the same time, variations  in the size of solutional morphologies also increase their difficulty of classification. The inventory of forms has been structured into 4 different categories: megaforms (organization of the  cave  systems), macroforms (morphologies from hectometric to decametric order), mesoforms (morphologies from decametric to metric order) and microforms (morphologies from metric by centimetric  order). Some  of the morphologies can be found simultaneously in two different categories.

Hypogenic contribution to speleogenesis in a predominant epigenic karst system: A case study from the Venetian Alps, Italy, 2012, Tisato Nicola, Sauro Francesco, Bernasconi Stefano M. , Bruijn Rolf H. C. , De Waele Jo

Buso della Rana and Buso della Pisatela are two karstic caves located in north-east Italy. They are part of the same karst system and are developed in the Castelgomberto calcarenitic marine sediments, which were deposited in a shallow Caribbean-type sea during the Eocene. The Buso della Rana-Pisatela system developed mostly at the contact between the Castelgomberto calcarenite and underlying volcanic rocks. The system of caves is ~37 km long and has only three entrances, two of which are semi-artificial. The overlying karst plateau is not directly connected to the Buso della Rana-Pisatela system and, with the exception of one deep abyss, exhibits a rather poorly developed karst. This is unexpected considering the presence at depth of such a large and long cave. Gypsum (CaSO4·2H2O) has locally been observed on the walls of the Buso della Pisatela cave. Energy dispersive X-ray spectroscopy (EDS), performed with a scanning electron microscope (SEM), reveals the presence of sulfur-bearing minerals within the host rock. Gypsum was formed by oxidation of these minerals as indicated by negative δ34S values. The oxidation of sulfide minerals forms a sulfuric-acid solution that dissolves the Castelgomberto calcarenite and, once it is oversaturated in calcium, precipitates as gypsum. The lack of well-developed karst on top of the plateau and the analyses suggest that the formation mechanisms for the Buso della Rana-Pisatela system differ from classical epigenic speleogenesis. The “pyrite-effect” has been recognized in other caves and described in literature. In our case pyrite is responsible of two hypo-speleogenetic processes: i) the dissolution of a portion of the host rock and ii) the enlargement of the karst voids as a consequence of the haloclastic effect.

Drowned Karst Landscape Offshore the Apulian Margin (Southern Adriatic Sea, Italy), 2012, Taviani M. , Angeletti L. , Campiani E. , Ceregato A. , Foglini F. , Maselli V. , Morsilli M. , Parise M. , Trincardi F.

The south Adriatic shelf offshore of the predominently carbonate Apulian coast is characterized by a peculiar rough topography interpreted as relic karst formed at a time of lower sea level. The study area covers a surface of about 220 km2, with depths ranging from 50 to 105 m. The most relevant and diagnostic features are circular depressions a few tens to 150 m in diameter and 0.50 to 20 m deep thought to be dolines at various stages of evolution. The major doline, Oyster Pit, has its top at about 50 m water depth and is 20 m deep. It is partly filled with sediments redeposited by episodic mass failure from the doline’s flank. Bedrock samples from the study area document that Plio-Pleistocene calcarenites, tentatively correlated with the Calcarenite di Gravina Fm, are a prime candidate for the carbonate rocks involved in the karstification, although the presence of other units, such as the Peschici or Maiolica Fms, is not excluded. The area containing this subaerial karst landscape was submerged about 12,500 years ago as a result of the postglacial transgression over the continental shelf.

Acqua Fitusa Cave: an example of inactive water-table sulphuric acid cave in Central Sicily, 2012, Vattano M. , Audra Ph. , Bigot J. Y. , Waele J. D. , Madonia G. , Nobcourt J. C.

Hypogenic caves are generated by water recharging from below independently of seepage from the overlying or immediately adjacent surface. These waters are often thermal and enriched in dissolved gases, the most common of which are CO2 and H2S. Hypogenic caves can be thermal caves, sulphuric acid caves, basal injection caves. They differ from epigenic caves in many ways, such as: speleogenetic mechanisms, morphological features, chemical deposits, and lack of alluvial sediments (KLIMCHOUK, 2007; KLIMCHOUK & FORD, 2009; PALMER, 2011). Several studies were conducted to evaluate the hypogenic origin of a large number of caves (AUDRA et alii, 2010; KLIMCHOUK & FORD, 2009; STAFFORD et alii, 2009). A significant contribution was given by the work of Klimchouk (2007) that systematically provided instruments and models to better understand and well define the hypogenic karst processes and landforms. Detailed studies on hypogenic caves were carried out in Italy since the 90s in different karst systems, especially in the Central and Southern Appenines. These studies mainly concerned chemical deposits related to ascending water and micro-biological action (GALDENZI & MENICHETTI, 1995; GALDENZI, 1997; PICCINI, 2000; GALDENZI & MARUOKA, 2003, FORTI & MOCCHIUTTI, 2004; GALDENZI, 2012). In this paper, we present the first results of researches conducted in Acqua Fitusa cave that was believed to be an epigenic cave until today. Acqua Fitusa cave is located in Central Sicily, along the north-eastern scarp of a N-S anticline, westward vergent, forming the Mt. La Montagnola. The cave formed in the Upper Cretaceous Rudist breccias member of the Crisanti Fm., composed of conglomerates and reworked calcarenites with rudist fragments and benthic foraminifers ( CATALANO et alii, 2011). The cave consists at least of three stories of subhorizontal conduits, displaying a total length of 700 m, and a vertical range of 25 m. It represents a clear example of inactive water-table sulphuric acid cave, produced mainly by H 2S degassing in the cave atmosphere. Despite the small size, Acqua Fitusa cave is very interesting for the abundance and variety of forms and deposits related to rising waters and air flow. A ~ 7 m deep inactive thermo-sulphuric discharge slot intersects the floor of some passages for several meters (Fig. 1). Different morphologies of small and large sizes, generated by condensation-corrosion processes, can be observed along the ceiling and walls: ceiling cupolas and large wall convection niches occur in the largest rooms of the cave; deep wall convection niches, in places forming notches, incise cave walls at different heights; condensation-corrosion channels similar to ceiling-half tubes carve the roof of some passages; replacements pockets due to corrosion-substitution processes are widespread; boxwork due to differential condensation-corrosion were observed in the upper parts of the conduits. Sulphuric notches with flat roof, linked to lateral corrosion of the thermal water table, carve the cave walls at different heights recording past stages of base-level lowering. 

Results 31 to 45 of 47
You probably didn't submit anything to search for