Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That drain tile; french drain is a porous pipe used for collection of excess ground water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for lead (Keyword) returned 375 results for the whole karstbase:
Showing 361 to 375 of 375
Insights into Cave Architecture and the Role of Bacterial Biofilm, 2013,

Caves offer a stable and protected environment from harsh and changing outside conditions. They lend living proof of the presence of minute life forms that delve deep within the earth’s crust where the possibility of life seems impossible. Devoid of all light sources and lacking the most common source of energy supplied through photosynthesis, the mysterious microbial kingdom in caves are consequently dependent upon alternative sources of energy derived from the surrounding atmosphere, minerals and rocks. There are a number of features that can be observed within a cave that may serve as evidence of microbial activity, for example, formation of biofilms comprised of multiple layers of microbial communities held together by protective gel-like polymers which form complex structures. Different bacterial biofilms can develop on the walls of the cave which can be visually distinguished by their colorations. Moreover, the pH generated by the metabolism of bacterial biofilm on the cave environment can lead to precipitation or dissolution of minerals in caves. Caves also offer an excellent scenario for studying biomineralization processes. The findings on the association of bacteria with secondary minerals as mentioned in this review will help to expand the existing knowledge in geomicrobiology and specifically on the influence of microorganisms in the formation of cave deposits. This paper reviews the current state of knowledge of biospeleology of caves and the associated bacterial biofilms. Recommendations for future research are mentioned to encourage a drift from qualitative studies to more experimental studies.


Biospeleogenesis, 2013,

Microorganisms have shaped the world around us, yet their role in karst processes and speleogenesis remains poorly understood. Biospeleogenesis is the formation of subsurface cavities and caves through the activities of microorganisms, by either respiratory (redox) or metabolic chemistries. In carrying out energy acquisition and the metabolic processes of growth, microorganisms change the local geochemistry of the environment. Such activities can dramatically accelerate speleogenesis and even lead to cave formation in geochemical environments that would otherwise not be conducive to dissolution. The aim of this chapter is to help the reader understand the importance of microbial activity in geochemistry and how such activity can lead to the formation and morphology of caves. The chapter then describes the role that microorganisms are known to have in speleogenesis (carbonic and sulfuric acid biospeleogenesis), hints that such activity may be occurring in newly described cave systems (iron biospeleogenesis), and a potential role in other cave systems (quartzite biospeleogenesis). It is hoped that the reader will gain an understanding of what motivates microorganisms to dramatically change their environment, understand the potential geochemical conditions where such activity could occur, and allow the informed geologist to make predictive statements as to the potential of, and for, biospeleogenesis


Karst Memories Above and Beneath the See: Marseilles and Continental Shelf During the Cosquer Cave Occupation, 2014, Collinagirard, Jacques

In the south of France, the Cosquer Cave with its famous prehistoric paintings is located in a karstic area located between Marseilles and Cassis. This emerged and submerged karst is typical of karstic coasts submerged after the Late-Glacial Maximum. Ail the forms observed in the hinterland can be observed directly by scuba divers and indirectly on bathymetrie charts: lapiaz, karstic archs, sinkholes, uvala and polje. The emerged and submerged landscapes are mainly the heritage of specifie lithological conditions (Urgonian limestones) and tectonic conditions (vertical faulting network leading to coastal eollapse in theMediterranean Sea). üther elements of this submerged Iandscape are given by the traces of the last sea level rise (palaeo-shorelines and erosion platforms and notehes). AIl the area between Marseilles and La Ciotat is now established as the Calanques National Park, inc1uding the Cosquer Cave with its upper Palaeolithic rock art paintings, which adds an international archaeological interest to this exceptional natural area.


‘Looping caves’ versus ‘water table caves’: The role of base-level changes and recharge variations in cave development, 2014, Gabrovšek Franci, Häuselmann Philipp, Audra Philippe

The vertical organisation of karst conduit networks has been the focus of speleogenetic studies for more than a century. The four state model of Ford and Ewers (1978), which still is considered as the most general, relates the geometry of caves to the frequency of permeable fissures. The model suggests that the ‘water table caves’ are common in areas with high fissure frequency, which is often the case in natural settings. However, in Alpine karst systems, water table caves aremore the exception than the rule. Alpine speleogenesis is influenced by high uplift, valley incision rates and irregular recharge. To study the potential role of these processes for speleogenesis in the dimensions of length and depth, we apply a simple mathematical model based on coupling of flow, dissolution and transport.We assume a master conduit draining thewater to the spring at a base level. Incision of the valley triggers evolution of deeper flow pathways,which are initially in a proto-conduit state. Themaster conduit evolves into a canyon following the valley incision,while the deep pathways evolve towards maturity and tend to capture the water fromthe master conduits. Two outcomes are possible: a) deep pathways evolve fast enough to capture all the recharge, leaving the master conduit dry; or b) the canyon reaches the level of deep pathways before these evolve to maturity. We introduce the Loop-to-Canyon Ratio (LCR), which predicts which of the two outcomes is more likely to occur in certain settings. Our model is extended to account for transient flow conditions. In the case of an undulating master conduit, floodwater is stored in troughs after the flood retreat. This water seeps through sub-vertical fractures (‘soutirages’) connecting the master conduitwith the deep pathways. Therefore, the loops evolve also during the dry season, and the LCR is considerably increased. Although themodel is based on several approximations, it leads to some important conclusions for vertical organisation of karst conduit networks and stresses the importance of base-level changes and transient recharge conditions. It therefore gives an explanation of speleogenesis that relies much more on the dynamic nature of water flow than on the static fracture density


Fingerprinting water-rock interaction in hypogene speleogenesis: potential and limitations of isotopic depth-profiling, 2014, Spötl Ch, Dublyansky Y.

Dissolution processes in karst regions commonly involve (meteoric) water whose stable isotopic (O, H, C) composition is distinctly different from that of the paleowaters from which the host rock (limestone, dolostone) formed. This, in theory, should lead to isotopic alteration of the host rock beyond the active solution surface as the modern karst water is out of isotopic equilibrium with the carbonate rock. No such alteration has been reported, however, in epigenetic karst systems. In contrast, isotopic alteration, commonly referred to as isotopic halos or fronts, are known from various hypogene systems (ore deposits, active hydro­thermal systems, etc.). These empirical observations suggest that stable isotope data may be a diagnostic tool to identify hypogene water-rock interactions particularly in cave systems whose origin is ambiguous.

We have been testing the applicability of this assumption to karst settings by studying the isotopic composition of carbonate host rocks in a variety of caves showing clear-cut hypogene morphologies. Cores drilled into the walls of cave chambers and galleries were stud­ied petrographically and the C and O isotope composition was analyzed along these cores, which typically reached a depth of 0.5 to 1.2 m. We identified three scenarios: (a) no isotopic alteration, (b) a sigmoidal isotope front within a few centimeters of the cave wall, and (c) pervasive isotope alteration throughout the entire core length. Type (a) was found in caves where the rate of cave wall retreat apparently outpaced the rate of isotopic alteration of the wall rock (which is typical, for example, for sulfuric acid speleogenesis). Type (c) was observed in geologically young, porous limestone showing evidence of alteration zones up to 5 m wide. The intermediate type (b) was identified in hypogene karst cavities developed in tight limestone, dolostone and marble.

Our data in conjunction with evidence from speleothems and their geochemical and fluid-inclusion composition suggest that the spa­tial extent of the isotopic alteration front depends on the porosity and permeability, as well as on the saturation state of the water. Wider alteration zones primarily reflect a higher permeability. Shifts are most distinct for oxygen isotopes and less so for carbon, whereby the amplitude depends on a number of variables, including the isotopic composition of unaltered host rock, the isotopic composition of the paleofluid, the temperature, the water/rock ratio, the surface of water-rock contact, the permeability of the rock, and the time available for isotope exchange. If the other parameters can be reasonably constrained, then semi-quantitative temperature estimates of the paleowater can be obtained assuming isotopic equilibrium conditions.

If preserved (scenarios b and c), alteration fronts are a strong evidence of hypogene speleogenesis, and, in conjunction with hypogene precipitates, allow to fingerprint the isotopic and physical parameters of the altering paleofluid. The reverse conclusion is not valid, however; i.e. the lack of evidence of isotopic alteration of the cave wall rock cannot be used to rule out hypogene paleo-water-rock interaction.


MORPHOLOGICAL EFFECTS OF CONDENSATION-CORROSION SPELEOGENESIS AT DEVILS HOLE RIDGE, NEVADA, 2014, Dublyansky Y. , Spötl C.

The Devils Hole Ridge, a small block of Paleozoic carbonate rocks surrounded by the Amargosa Desert in southern Nevada, is located at the discharge end of the Ash Meadows regional groundwater flow system.
Continuous, long-term presence of slightly thermal (33.6°C) groundwater and the extensional tectonic setting, creating underground thermal lakes in open fractures, lead to intense dissolution above the water table. The morphology of the subaerial parts of the tectonic caves was slightly modified by condensation corrosion, and the Devils Hole Prospect Cave was almost entirely created by condensation corrosion. Caves and cavities in the Devils Hole Ridge are an interesting example of a hypogene speleogenesis by mechanism by condensation corrosion, operating above an aquifer which was demonstrably supersaturated with respect to calcite for hundreds of thousands of years.


Characterisation and modelling of conduit restricted karst aquifers – Example of the Auja spring, Jordan Valley, 2014, Schmidta Sebastian, Geyera Tobias, Guttmanb Joseph, Mareic Amer, Riesd Fabian, Sauter Martin

The conduit system of mature karstified carbonate aquifers is typically characterised by a high hydraulic conductivity and does not impose a major flow constriction on catchment discharge. As a result, discharge at karst springs is usually flashy and displays pronounced peaks following recharge events. In contrast, some karst springs reported in literature display a discharge maximum, attributed to reaching the finite discharge capacity of the conduit system (flow threshold). This phenomenon also often leads to a non-standard recession behaviour, a so called “convex recession”, i.e. an increase in the recession coefficient during flow recession, which in turn might be used as an indicator for conduit restricted aquifers. The main objective of the study is the characterisation and modelling of those hydrogeologically challenging aquifers. The applied approach consists of a combination of hydrometric monitoring, a spring hydrograph recession and event analysis, as well as the setup and calibration of a non-linear reservoir model. It is demonstrated for the Auja spring, the largest freshwater spring in the Lower Jordan Valley. The semi-arid environment with its short but intensive precipitation events and an extended dry season leads to sharp input signals and undisturbed recession periods. The spring displays complex recession behaviour, exhibiting exponential (coefficient α) and linear (coefficient β) recession periods. Numerous different recession coefficients α were observed: ∼0.2 to 0.8 d−1 (presumably main conduit system), 0.004 d−1 (fractured matrix), 0.0009 d−1 (plateau caused by flow threshold being exceeded), plus many intermediate values. The reasons for this observed behaviour are the outflow threshold at 0.47 m3 s−1 and a variable conduit–matrix cross-flow in the aquifer. Despite system complexity, and hence the necessity of incorporating features such as a flow threshold, conduit–matrix cross-flow, and a spatially variable soil/epikarst field capacity, the developed reservoir model is regarded as relatively simplistic. As a number of required parameters were calculated from the hydrogeological analysis of the system, it requires only six calibration parameters and performs well for the highly variable flow conditions observed. Calculated groundwater recharge in this semi-arid environment displays high interannual variability. For example, during the 45-year simulation period, only five wet winter seasons account for 33% of the total cumulative groundwater recharge.


Genesis of folia in a non-thermal epigenic cave (Matanzas, Cuba), 2014,

Folia are an unusual speleothem type resembling inverted cups or bracket fungi. The mechanism of folia formation is not fully understood and is the subject of an ongoing debate. This study focuses on an occurrence of folia present in Santa Catalina Cave, a non-thermal epigenic cave located close to Matanzas (Cuba). The sedimentology, morphology, petrology, permeability and geochemistry of these folia have been studied to gain new insight on the processes leading to their development. It is concluded that folia in Santa Catalina Cave formed at the top of a fluctuating water body, through CO2-degassing or evaporation, which may have been enhanced by the proximity to cave entrances. Two observations strongly support our conclusions. (1) When compared to other subaqueous speleothem (e.g. cave clouds) present in the same rooms, folia occur exclusively within a limited vertical interval that likely represents an ancient water level. Folia occur together with calcite rafts and tower cones that developed, respectively, on top of and below the water level. This suggests that a fluctuating interface is required for folia formation. (2) The measured permeability of the folia is too high to trap gas bubbles. Thus, in contrast to what has been proposed in other studies, trapped bubbles of CO2 cannot be invoked as the key factor determining the genesis and morphology of folia in this subaqueous environment


Diatom flora in subterranean ecosystems: a review., 2014,

In scarcity of light and primary producers, subterranean ecosystems are generally extremely oligotrophic habitats, receiving poor supplies of degradable organic matter from the surface. Human direct impacts on cave ecosystems mainly derive from intensive tourism and recreational caving, causing important alterations to the whole subterranean environment. In particular, artificial lighting systems in show caves support the growth of autotrophic organisms (the so-called lampenflora), mainly composed of cyanobacteria, diatoms, chlorophytes, mosses and ferns producing exocellular polymeric substances (EPSs) made of polysaccharides, proteins, lipids and nucleic acids. This anionic EPSs matrix mediates to the intercellular communications and participates to the chemical exchanges with the substratum, inducing the adsorption of cations and dissolved organic molecules from the cave formations (speleothems). Coupled with the metabolic activities of heterotrophic microorganisms colonising such layer (biofilm), this phenomenon may lead to the corrosion of the mineral surfaces. In this review, we investigate the formation of biofilms, especially of diatom-dominated ones, as a consequence of artificial lighting and its impacts on speleothems. Whenever light reaches the subterranean habitat (both artificially and naturally) a relative high number of species of diatoms may indeed colonise it. Cave entrances, artificially illuminated walls and speleothems inside the cave are generally the preferred substrates. This review focuses on the diatom flora colonising subterranean habitats, summarizing the information contained in all the scientific papers published from 1900 up to date. In this review we provide a complete checklist of the diatom taxa recorded in subterranean habitats, including a total of 363 taxa, belonging to 82 genera. The most frequent and abundant species recorded in caves and other low light subterranean habitats are generally aerophilic and cosmopolitan. These are, in order of frequency: Hantzschia amphioxys, Diadesmis contenta, Orthoseira roeseana, Luticola nivalis, Pinnularia borealis, Diadesmis biceps and Luticola mutica. Due to the peculiarity of the subterranean habitats, the record of rare or new species is relatively common. The most important environmental factors driving species composition and morphological modifications observed in subterranean populations are analysed throughout the text and tables. In addition, suggestions to prevent and remove the corrosive biofilms in view of an environmentally sustainable cave management are discussed.


A new method to quantify carbonate rock weathering, 2015, Dubois Caroline, Deceuster John, Kaufmann Olivier, Rowberry Matt D.

The structure and composition of carbonate rocks is modified greatly when they are subjected to phenomena that lead to their weathering. These processes result in the production of residual alterite whose petrophysical, mechanical, and hydrological properties differ completely to those of the unweathered rock. From a geotechnical perspective, it is important that such changes are fully understood as they affect reservoir behavior and rock mass stability. This paper presents a quantitative method of calculating a weathering index for carbonate rock samples based on a range of petrophysical models. In total, four models are proposed, each of which incorporates one or more of the processes involved in carbonate rock weathering (calcite dissolution, gravitational compaction, and the incorporation of inputs). The selected weathering processes are defined for each model along with theoretical laws that describe the development of the rock properties. Based on these laws, common properties such as rock density, porosity, and calcite carbonate content are estimated from the specific carbonate rock weathering index of the model. The propagation of measurement uncertainties through the calculations has been computed for each model in order to estimate their effects on the calculated weathering index. A new methodology is then proposed to determine the weathering index for carbonate rock samples taken from across a weathered feature and to constrain the most probable weathering scenario. This protocol is applied to a field dataset to illustrate how these petrophysical models can be used to quantify the weathering and to better understand the underlying weathering processes.


Procedural Modeling of Cave-like Channels, 2015, Pytel Alex, Mann Stephen

Hydraulic erosion that takes place underground leads to the formation of complex channel networks whose morphology emerges from the dynamic behavior of each channel, based on the presence of other channels nearby. Our approach to the problem of modeling such channel networks for computer graphics application involves a self-organized model of channel development and a two-stage simulation for constructing the geometry of the channels. By emphasizing self-organization of flow and pressure, our simulation is able to reproduce several types of channel behavior known from hydrogeomorphology, such as tributary capture.


Genesis of folia in a non-thermal epigenic cave (Matanzas, Cuba), 2015, D'angeli Ilenia Maria, De Waele Jo, Ceballo Melendres Osmany, Tisato Nicola, Sauro Francesco, Grau Gonzalez Esteban Ruben, Bernasconi Stefano, Torriani Stefano, Bontognali Tomaso Renzo Rezio

Folia are an unusual speleothem type resembling inverted cups or bracket fungi. Themechanismof folia formation is not fully understood and is the subject of an ongoing debate. This study focuses on an occurrence of folia present in Santa Catalina Cave, a non-thermal epigenic cave located close to Matanzas (Cuba). The sedimentology, morphology, petrology, permeability and geochemistry of these folia have been studied to gain new insight on the processes leading to their development. It is concluded that folia in Santa Catalina Cave formed at the top of a fluctuating water body, through CO2-degassing or evaporation, which may have been enhanced by the proximity to cave entrances. Two observations strongly support our conclusions. (1) When compared to other subaqueous speleothems (e.g. cave clouds) present in the same rooms, folia occur exclusively within a limited vertical interval that likely represents an ancient water level. Folia occur together with calcite rafts and tower cones that developed, respectively, on top of and below the water level. This suggests that a fluctuating interface is required for folia formation. (2) The measured permeability of the folia is too high to trap gas bubbles. Thus, in contrast to what has been proposed in other studies, trapped bubbles of CO2 cannot be invoked as the key factor determining the genesis and morphology of folia in this subaqueous environment.


International Conference on Groundwater in Karst, Programme and Abstracts, 2015, University of Birmingham, Birmingham, 2015,

Carbonate rocks present a particular challenge to hydrogeologists as the major groundwater flux is through an integrated network of dissolutionally enlarged channels that discharge via discrete springs. The channels span a very wide aperture range: the smallest are little more than micro-fractures or pathways through the rock matrix but at the other end of the spectrum (and commonly in the same rock mass) channels may grow to dimensions where they can be explored by humans and are called caves. Groundwater transmission through the smaller channels that are commonly intersected by boreholes is very slow and has often been analysed using equivalent porous media models although the limitations of such models are increasingly recognised. At the other end of the spectrum (and commonly in the same rock mass) flow through the larger conduits is analogous to ‘a surface stream with a roof’ and may be amenable to analysis by models devised for urban pipe networks. Regrettably, hydrogeologists have too often focussed on the extreme ends of the spectrum, with those carbonates possessing large and spectacular landforms regarded as “karst” whereas carbonates with little surface expression commonly, but incorrectly labelled as “non-karstic”. This can lead to failures in resource management. Britain is remarkable for the variety of carbonate rocks that crop out in a small geographical area. They range in age and type from Quaternary freshwater carbonates, through Cenozoic, Mesozoic and Paleozoic limestones and dolostones, to Proterozoic metacarbonates. All near surface British carbonates are soluble and groundwater is commonly discharged from them at springs fed by dissolutionally enlarged conduits, thereby meeting one internationally accepted definition of karst. Hence, it is very appropriate that Britain, and Birmingham as Britain's second largest city, hosts this International Conference on Groundwater in Karst. The meeting will consider the full range of carbonate groundwater systems and will also have an interdisciplinary approach to understanding karst in its fullest sense.


Influence of the f low rate on dissolution and precipitation features during percolation of CO 2 - rich sulfate solutions through fractured limestone samples , 2015,

Calcited issolution and  gypsum precipitation is expected to occur  when injecting CO2  in  a limestone reservoir with sulfate - rich resident brine. If the reservoir is fractured, These reactions will take place mainly in the fractures, which serve as preferential paths for fluid  flow. As a consequence, the geometry of the fractures will vary leading to changes  in their hydraulic and transport properties. In this study, a set of percolation  experiments  which  consisted of injecting CO 2 - rich solutions through fractured  limestone  cores were performed under P  =  150 bar and  T  =  60  ºC .  Flow rate s ranging from 0.2 to 60 mL/ h and sulfate - rich and sulfate - free solutions  were used. Variation in fracture volume induced by calcite dissolution and  gypsum precipitation was measured by X - ray computed microtomography  (XCMT) and aqueous chemistry. An increase in flow rate led to  an increase in  volume of dissolved limestone per unit of  time , which indicated that the calcite dissolution rate in the fracture  was transport  controlled. Moreover, the dissolution pattern varied from face dissolution to wormhole formation  and uniform dissolution by increasing the flow rate (i.e.,  Pefrom 1 to 346 ). Fracture permeability always increased and depended on the type of dissolution pattern.


Results of the Exploration of the “Combe du Creux”, 2016,

This article deals with speleology applied to the exploration of a siphon named “Combe du Creux”. It is located in France, in the department of the Doubs. We present surveys and the specific forms that are encountered in this flooded cave; eventually we propose a possible evolution of this sump. Cave diving, regarded as cave science, closely associated to underwater photography, is a good mean to investigate such a cave.

We have been diving in this sump since 2003 and we present the results of 13 years of explorations, up to July 2016.
After having explored this cave up to the farthest known point, we made a survey (elevation and plane view). Further dives, using a rebreather when necessary, enabled a work of observation and underwater photography.

We observed concretions – limestone as well as clay – and potholes below the current water level. We also observed ribs and scallops. The underground development of the cave seems well correlated with geologic elements that can be observed outside.
The set of all the observations leads to the conclusion that, at long time scale, the water level has fluctuated. It has been, at least once, 46 m (151 ft) below its current position. In one place inside the cave, it has been observed interactions between flutes and scallops: this new information should be taken in account in any new theoretical or computational modeling of scallops.


Results 361 to 375 of 375
You probably didn't submit anything to search for