Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That niter is a white orthorhombic mineral - kno3. it is a soluble crystalline salt that occurs as a product of nitrification in most arable soils in hot, dry regions, and in the loose earth forming the floors of some natural caves [1]. synonyms: saltpeter; potassium nitrate.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for fluid flow (Keyword) returned 58 results for the whole karstbase:
Showing 46 to 58 of 58
Mapping permeability over the surface of the Earth, 2011, Gleeson T. , Smith L. , Moosdorf N. , Hartmann J. , Durr H. H. , Manning A. H. , Van Beek L. P. H. , Jellinek A. M.

Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1–2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of 5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

 

Coupled Thermo-Hydro-Chemical (THC) Modeling of Hypogene Karst Evolution in a Prototype Mountain Hydrologic System, 2011, Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G.

Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths grows to a point where the permeability is large enough for the onset of buoyant convection. As a result, a multitude of buoyant convection cells form that take on a two-dimensional (2D) maze-like appearance, which could represent a 2D analog of the three-dimensional (3D) mazework pattern widely thought to be characteristic of hypogene cave systems. Although computational limitations limited us to 2D, we suggest that similar process interactions in a 3D network of fractures and faults could produce a 3D mazework.


Computational Investigation of Fundamental Mechanisms Contributing to Fracture Dissolution and the Evolution of Hypogene Karst Systems, 2011, Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G. , Stauffer P. H.

Hypogene karst systems evolve by dissolution resulting from the cooling of water flowing upward against the geothermal gradient in limestone formations. We present a comprehensive coupled-process model of fluid flow, heat transfer, reactive transport and buoyancy effects to investigate the origin of hypogene karst systems by fracture dissolution. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. Our formulation inherently incorporates mechanisms such as “mixing corrosion” that have been implicated in the formation of hypogene cave systems. It also allows for rigorous representation of temperature-dependent fluid density and its consequences at various stages of karstification. The model is applied to investigate karstification over geological time scales in a network of faults/fractures that serves as a vertical conduit for upward flow. We considered two different conceptual hydrogeologic models. In the first model, the upward flow is controlled by a constant pressure gradient. In the second model, the flow is induced by topographic effects in a mountainous hydrologic system. During the very early stages of fracture growth, there is a positive feedback between fluid flow rate, heat transfer and dissolution. In this stage the dissolution rate is largely controlled by the retrograde solubility of calcite and aperture growth occurs throughout the fracture. For the first model, there is a period of slow continuous increase in the mass flow rate through the fracture, which is followed by an abrupt rapid increase. We refer to the time when this rapid increase occurs as the maturation time. For the second model of a mountainous hydrologic system, the fluid flux through the fracture remains nearly constant even though the fracture permeability and aperture increase. This is largely because the permeability of the country rock does not increase significantly. While this limits the fluid flux through the system, it does not impede karstification. At later stages, forced convection and buoyant convection effects arise in both models due to the increased permeability of the evolving fracture system. Our results suggest that there is s strong tendency for buoyant convection cells to form under a wide range of conditions. A modified Rayleigh number provides a unified quantitative criterion for the onset of buoyant convection across all cases considered. Once buoyant convection cells are set up, dissolution is sustained in the upward flow portions of the cells, while precipitation occurs in the regions of downward flow. We discuss the implications of this type of flow pattern for the formation of hot springs and mazework caves, both of which are characteristic of hypogene karst environments. We also investigate the sensitivity of karst evolution to various physical and geochemical factors.


Microsculpturing of solutional rocky landforms., 2013, Lundberg, J.

Karren (small-scale dissolutional features) have a great variety of forms and are known by a huge suite of terms. Bare rock forms are sharper and more gravitomorphic than subcutaneous forms, where rock-fracture control may dominate. Four controls operate: (1) physical properties of the solvent (fluid flow, surface tension, and percolation); (2) chemical properties of the solvent (unmodified rainwater, enhanced aggressivity, and reduced aggressivity); (3) chemical properties of the solute (rock solubility); and (4) physical properties of the solute (fractures and rock texture). Large expanses of bare rock karren are called karren fields, the more famous including China’s ‘Stone Forest’, Madagascar’s ‘Tsingy’, and Mulu’s ‘Pinnacles’. in caves


Episodic fluid flow, hypogene and epigene karstification, and dolomitiza-tion in an accretionary prism setting, Barbados, West Indies, 2013, Machel Hans G. , Sumrall Jonathan B. , Mylroie John E.

Episodic fluid flow, hypogene and epigene karstification, and dolomitiza-tion in an accretionary prism setting, Barbados, West Indies, 2013, Machel Hans G. , Sumrall Jonathan B. , Mylroie John E.

Deep 3D thermal modelling for the city of Berlin (Germany), 2013, Sippel Judith, Fuchs Sven, Cacace Mauro, Braatz Anna, Kastner Oliver, Huenges Ernst, Scheckwenderoth Magdalena

This study predicts the subsurface temperature distribution of Germany’s capital Berlin. For this purpose, a data-based lithosphere-scale 3D structural model is developed incorporating 21 individual geological units. This model shows a horizontal grid resolution of (500 9 500) m and provides the geometric base for two different approaches of 3D thermal simulations: (1) calculations of the steadystate purely conductive thermal field and (2) simulations of coupled fluid flow and heat transport. The results point out fundamentally different structural and thermal configurations for potential geothermal target units. The top of the Triassic Middle Buntsandstein strongly varies in depth (159–2,470 m below sea level) and predicted temperatures (15–95 _C), mostly because of the complex geometry of the underlying Permian Zechstein salt. The top of the sub-salt Sedimentary Rotliegend is rather flat (2,890–3,785 m below sea level) and reveals temperatures of 85–139 _C. The predicted 70 _C-isotherm is located at depths of about 1,500–2,200 m, cutting the Middle Buntsandstein over large parts of Berlin. The 110 _C-isotherm at 2,900–3,700 m depth widely crosscuts the Sedimentary Rotliegend. Groundwater flow results in subsurface cooling the extent of which is strongly controlled by the geometry and the distribution of the Tertiary Rupelian Clay. The cooling effect is strongest where this clay-rich aquitard is thinnest or missing, thus facilitating deep-reaching forced convective flow. The differences between the purely conductive and coupled models highlight the need for investigations of the complex interrelation of flow- and thermal fields to properly predict temperatures in sedimentary systems.


Deep 3D thermal modelling for the city of Berlin (Germany), 2013, Sippel Judith, Fuchs Sven, Cacace Mauro, Braatz Anna, Kastner Oliver, Huenges Ernst, Scheckwenderoth Magdalena

This study predicts the subsurface temperature distribution of Germany’s capital Berlin. For this purpose, a data-based lithosphere-scale 3D structural model is developed incorporating 21 individual geological units. This model shows a horizontal grid resolution of (500 9 500) m and provides the geometric base for two different approaches of 3D thermal simulations: (1) calculations of the steady state purely conductive thermal field and (2) simulations of coupled fluid flow and heat transport. The results point out fundamentally different structural and thermal configurations for potential geothermal target units. The top of the Triassic Middle Buntsandstein strongly varies in depth (159–2,470 m below sea level) and predicted temperatures (15–95 _C), mostly because of the complex geometry of the underlying Permian Zechstein salt. The top of the sub-salt Sedimentary Rotliegend is rather flat (2,890–3,785 m below sea level) and reveals temperatures of 85–139 _C. The predicted 70 _C-isotherm is located at depths of about 1,500–2,200 m, cutting the Middle Buntsandstein over large parts of Berlin. The 110 _C-isotherm at 2,900–3,700 m depth widely crosscuts the Sedimentary Rotliegend. Groundwater flow results in subsurface cooling the extent of which is strongly controlled by the geometry and the distribution of the Tertiary Rupelian Clay. The cooling effect is strongest where this clay-rich aquitard is thinnest or missing, thus facilitating deep-reaching forced convective flow. The differences between the purely conductive and coupled models highlight the need for investigations of the complex interrelation of flow- and thermal fields to properly predict temperatures in sedimentary systems.


Seismic study of the low-permeability volume in southern France karst systems, 2013, Galibert P. Y. , Valois R. , Mendes M. , Gurin R.

Locating groundwater in deep-seated karst aquifers is inherently difficult. With seismic methods, we studied the upper epikarst and the underneath low-permeability volume (LPV) of several karst systems located in the southern Quercy and Larzac regions of France and found that refraction tomography was effective only in the epikarst and not in the LPV. We evaluated a 3D case study using a combination of surface records and downhole receivers to overcome this limitation. This 3D approach unveiled a set of elongated furrows at the base of the epikarst and identified heterogeneities deep inside the LPV that may represent high-permeability preferred pathways for water inside the karst. To achieve the same result when no borehole was available, we studied seismic amplitudes of the wavefield, recognizing that wave-induced fluid flow in low-permeability carbonates is a driving mechanism of seismic attenuation. We developed a workflow describing the heterogeneity of the LPV with spectral attributes derived from surface-consistent decomposition principles, and we validated its effectiveness at benchmark locations. We applied this workflow to the 3D study and found a low-amplitude signal area at depth; we interpreted this anomaly as a water-saturated body perched above the aquifer.


EARTH TIDE, A POTENTIAL DRIVER FOR HYPOGENIC FLUID FLOW: OBSERVATIONS FROM A SUBMARINE CAVE IN SW TURKEY, 2014, Bayari C. S. , Ozyurt N. N.

Initiation and development of karstification requires a con­tinuous flushing of pore water in equilibrium with carbon­ate minerals. Under confined flow conditions, the energy required for pore water transport is supplied by external pressure sources in addition to the by earth’s gravity. Earth tides and water loads over the confined flow system are the main sources of ex­ternal pressure that drives the pore water. Earth tides, created by the sum of the horizontal components of tide generation forces of moon and sun, causes expansion and contraction of the crust in horizontal direction. Water load on top of the confined flow system causes vertical loading/unloading and may be in the form of recharge load or ocean loading in the inland and sub-oceanic settings, respectively. Increasing and decreasing tide generating force results in pore water transport in the confined system by means of contraction and expansion, respectively. Since these forces operate in perpendicular directions, pore water flushing by earth tides becomes less effective when water load on top of the confined flow system increases. Temporal variation of fresh­water content in a submarine cave is presented as an example of groundwater discharge driven by earth tides and recharge load.


MODELING SPELEOGENESIS USING COMPUTATIONAL FLUID DYNAMICS: POTENTIAL APPLICATIONS TO HYPOGENE CAVES, 2014, Covington M. , Myre J.

Numerical models of speleogenesis typically simulate flow and dissolution within single fractures or networks of fractures. Such models employ fracture flow and pipe flow equations to determine flow rates and only consider average velocities within each fracture segment. Such approximations make large scale simulations of speleogenesis tractable. However, they do not allow simulation of the formation and evolution of micro- or meso-scale cave passage morphologies. Such morphologies are frequently studied within a field setting and utilized for the interpretation of the speleogenetic processes that formed the cave. One classic example is the formation of scallops in cave streams with turbulent flow. Scallops are used to interpret past flow velocities and directions. However, a recent analysis of the theory of limestone dissolution in turbulent flow conditions suggests a discrepancy between theory and reality concerning the formation of limestone scallops (Covington, in review). Similarly, the only attempt to numerically simulate flute formation in limestone found that the flute forms were not stable (Hammer et al., 2011). Motivated by these puzzles, we are developing a computational fluid dynamics (CFD) framework for the simulation of the evolution of dissolution morphologies.

While this project was initially conceived to better understand dissolution in turbulent flow, the tools being developed are particu­larly well-suited to examine a variety of other questions related to cave morphology on the micro- and meso-scales. There has been significant recent discussion about the interpretation of features that are diagnostic of hypogenic or transverse speleogenesis, such as the morphological suite of rising flow defined by Klimchouk (2007). Other authors have suggested that such forms can be found in a variety of settings where confined flow is not present (Mylroie and Mylroie, 2009; Palmer, 2011). We propose that simulation of such forms using a CFD speleogenesis code will allow a more complete understanding of the connections between process and form, because in such simulations the processes occurring are well-known, well-defined, and also can be adjusted within controlled numeri­cal experiments, where relevant parameters and boundary conditions are systematically varied.

The CFD framework we are developing is based on the Lattice Boltzman method (Chen and Doolen, 1998), which is a popular tech­nique for modeling the mechanics of complex fluids, including fluid mixtures, reactive transport, porous media flow, and complex and evolving domain geometries. With this framework it is straightforward to simulate many of the processes occurring in hypogene settings, including complex fluid flows, dissolution, solute and heat transport, and buoyancy-driven flow. Furthermore, this modeling framework allows these processes to be coupled so that their interactions and feedbacks can be explored. With the suite of capabili­ties provided by this framework, we can begin to numerically simulate the processes occurring in hypogene speleogenesis, including the driving mechanisms and the role of buoyancy-driven flow and its relationship with the morphological suite of rising flow. In the spirit of a workshop, this work is presented as in-progress, in the hopes that it will stimulate discussion on potential applications of the model being developed.


Superposed folding and associated fracturing influence hypogene karst development in Neoproterozoic carbonates, São Francisco Craton, Brazil, 2015,

Porosity and permeability along fractured zones in carbonates could be significantly enhanced by ascending fluid flow, resulting in hypogene karst development. This work presents a detailed structural analysis of the longest cave system in South America to investigate the relationship between patterns of karst conduits and regional deformation. Our study area encompasses the Toca da Boa Vista (TBV) and Toca da Barriguda (TBR) caves, which are ca. 107 km and 34 km long, respectively. This cave system occurs in Neoproterozoic carbonates of the Salitre Formation in the northern part of the São Francisco Craton, Brazil. The fold belts that are around and at the craton edges were deformed in a compressive setting during the Brasiliano orogeny between 750 and 540 Ma. Based on the integrated analysis of the folds and brittle deformation in the caves and in outcrops of the surrounding region, we show the following: (1) The caves occur in a tectonic transpressive corridor along a regional thrust belt; (2) major cave passages, at the middle storey of the system, considering both length and frequency, developed laterally along mainly (a) NE–SW to E–W and (b) N to S oriented anticline hinges; (3) conduitswere formed by dissolutional enlargement of subvertical joints,which present a high concentration along anticline hinges due to folding of competent grainstone layers; (4) the first folding event F1was previously documented in the region and corresponds with NW–SE- to N–S-trending compression, whereas the second event F2, documented for the first time in the present study, is related to E–Wcompression; and (5) both folding  еvents occurred during the Brasiliano orogeny. We conclude that fluid flow and related dissolution pathways have a close relationship with regional deformation events, thus enhancing our ability to predict karst patterns in layered carbonates.


Initial conditions or emergence: What determines dissolution patterns in rough fractures?, 2015,

Dissolution of fractured rocks is often accompanied by the formation of highly localized flow paths. While the fluid flow follows existing fractures in the rock, these fissures do not, in general, open uniformly. Simulations and laboratory experiments have shown that distinct channels or “wormholes”develop within the fracture, from which a single highly localized flow path eventually emerges. The aim of the present work is to investigate how these emerging flow paths are influenced by the initial aperture field. We have simulated the dissolution of a single fracture starting from a spatially correlated aperture distribution. Our results indicate a surprising insensitivity of the evolving dissolution patterns and flow rates to the amplitude and correlation length characterizing the imposed aperture field. We connect the similarity in outcomes to the self-organization of the flow into a small number of wormholes, with the spacing determined of the longest wormholes. We have also investigated the effect of a localized region of increased aperture on the developing dissolution patterns. A competition was observed between the tendency of the high-permeability region to develop the dominant wormhole and the tendency of wormholes to spontaneously nucleate throughout the rest of the fracture. We consider the consequences of these results for the modeling of dissolution in fractured and porous rocks.


Results 46 to 58 of 58
You probably didn't submit anything to search for