Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That void is see interstice.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for karst evolution (Keyword) returned 58 results for the whole karstbase:
Showing 46 to 58 of 58
Origin and karst geomorphological significance of the enigmatic Australian Nullarbor Plain blowholes, 2011, Doerr Stefan H. , Davies Rob R. , Lewis Alexander, Pilkington Graham , Webb John A. , Ackroyd Peter J. , Bodger Owen

The Australian Nullarbor Plain, one of the world's largest limestone platforms (~200 000?km2), has few distinctive surface karst features for its size, but is known for its enigmatic ‘blowholes’, which can display strong barometric draughts. Thousands of these vertical tubes with decimetre–metre (dm–m) scale diameter puncture the largely featureless terrain. The cause and distribution of these has remained unclear, but they have been thought to originate from downward dissolution and/or salt weathering.
To elucidate blowhole distribution and mode of formation we (i) correlated existing location data with Shuttle Radar Topography Mission (SRTM) data, which distinguishes the subtle undulations (< 10?m per?km) of the landscape, (ii) surveyed blowhole morphology and (iii) determined their rock surface hardness.
Over a sampled area of 4200?km2, the distribution of 615 known blowholes is not correlated with present topography. Blowholes are often connected to small or, in some cases extensive, but typically shallow cavities, which exhibit numerous ‘cupolas’ (dome-shaped pockets) in their ceilings. Statistical arguments suggest that cavities with cupolas are common, but in only a few cases do these puncture the surface. Hardness measurements indicate that salt weathering is not their main cause. Our observations suggest that blowholes do not develop downwards, but occur where a cupola breaks through the surface. Lowering of the land surface is suggested to be the main cause for this breakthrough. Although cupolas may undergo some modification under the current climate, they, as well as the shallow caves they are formed in, are likely to be palaeokarst features formed under a shallower water table and wetter conditions in the past. The findings presented have implications for theories of dissolutional forms development in caves worldwide. The environmental history of the Nullarbor platform allows testing of such theories, because many other factors, which complicate karst evolution elsewhere, have not interfered with landform evolution here. Copyright

Dades sobre paleocarst i espeleocronologia de les illes Balears , 2011, Gines J. , Gines A. , Fornos J. J.

The litho-stratigraphic record of the Balearic Islands, basically composed by carbonate rocks, include noticeable paleokarstic phenomena particularly owing to the complex tectonic structuration experienced by the Western Mediterranean basin all along its geological history. The most outstanding paleokarst features and associated breccia deposits are observed in the Jurassic limestones and, especially, in the postorogenic Upper Miocene carbonate rocks, where abundant funnel-shaped collapse structures (Messinian in age) have tightly conditioned the geomorphological evolution of the eastern coast of Mallorca. Regarding the karstification occurred in Pliocene and Quaternary times, the islands arise as exceptional scenarios in order to obtain valuable speleochronological data from quite different sources. The base level variations –controlled in turn by oscillations of the sea level–, as well as the evolutionary trends of endemic vertebrates that lived in the Balearic Islands, provide a solid chronological frame to undertake the geomorphologic study of Balearic caves and its sediments. Particularly, the glacio-eustatic oscillations experienced by the Mediterranean Sea remain accurately recorded by means of horizontal paleolevels of phreatic speleothems, mostly corresponding to Upper Pleistocene and Holocene sea-stands. The isotopic investigations (U-Th, 14C) carried out on these carbonate precipitates, as well as on speleothems in general, have supplied abundant absolute dating which strongly contribute to the chronological assessment of the endokarst evolution undergone in our islands. All the evidences gathered till now seem to place in the Pliocene, and in some cases even before, the main speleogenetic phases occurred in the archipelago. During the Middle and Upper Pleistocene, the caves in the Balearic Islands had only experienced minor morpho-sedimentary modifications embracing –in a significant number of cave sites– the deposition of abundant speleothems together with the emplacement of paleontological deposits that include endemic vertebrate fauna.

Overview of karst geo-environments and karst water resources in north and south China, 2011, Keqiang H. , Jia Y. , Wang F. , Lu Y.

The karst geological system in north China is different from that in the south. Due to differences in basic geological conditions and environment, the karst evolutional pattern and karst water resources, among other things, are also different in the two regions. This paper, based on on-site fieldwork and analysis of an extensive database of karst in China, presents a systematic and contrastive analysis of karst geological environment and karst water resources in north versus south China, highlights the differences between the two regions in basic karst geological conditions, groundwater dynamics and karst water resources, and concludes with the economic, environmental and engineering implications of these differences. These findings will be helpful for the strategic planning and decision-making processes associated with exploitation of karst geological resources and with prevention and control of karst geological hazards.

Controls on paleokarst heterogeneity. Integrated study of the Upper Permian syngenetic karst in Rattlesnake Canyon, Guadalupe Mountains, USA, 2011, Labraa De Miguel, Gemma

The present study contributes to a better understanding of early dissolution mechanisms for syngenetic karst development and provides constraints on the timing of formation of the Rattlesnake Canyon paleokarst system in the Guadalupe Mountains, New Mexico, U.S.A. Paleozoic paleokarsts commonly undergo burial and collapse, which reduces significantly the preservation of early fracture networks and geometries of dissolution. Rattlesnake Canyon constitutes a magnificent scenario for the study of global controls on Upper Permian karsting since early fracture networks and dissolution geometries are extremely well preserved and lack major tectonic deformation. This thesis sheds light on the scientific knowledge of paleokarsts and can be of interest to the oil industry since paleokarsts are common targets of exploration. As the evolution of the reservoir properties is often diagenetically controlled, the diagenetic study was particularly useful in determining the degree of sealing following hydrocarbon charge. 1) Aims This thesis seeks to improve our understanding of the relationship between early syndepositional fracture networks that are typically found in platform margins and syngenetic karst development. The thesis includes multidisciplinary carbonate studies aimed at understanding the multiscale paleokarst heterogeneity by means of (i) the development of a conceptual model for the karst evolution, (ii) the construction of a 3D paleokarst model, (iii) the determination of the diagenetic history of the paleokarst system and (iv) the paleokarst reservoir characterization. 2) Thesis Structure The thesis consists of 9 chapters and 2 appendices. Chapter 1 sets out the rationale for this thesis. Chapter 2 provides an introduction to the most basic aspects of karst science and to the hydrogeological model of Carbonate Island as well as an overview of the state-of-the-art paleokarst studies. The geological setting and the study area is detailed in Chapter 3. The results of the thesis are contained in Chapters 4 to 7. Because of the multidisciplinary nature of this thesis, each of these chapters is dedicated to one discipline. Chapter 4 focuses on the analysis of field data to obtain a conceptual model for the evolution of the paleokarst system. Chapter 5 discusses the methodology to implement the 3D paleokarst model and provides data to assess the dimensions of the system in subsurface. Chapter 6 focuses on the diagenetic stages that affected and controlled the karst development. Finally, Chapter 6 offers a paleokarst reservoir characterization. A comprehensive approach and discussion of the results obtained in each of these chapters are included in Chapter 8. General and specific conclusions are presented in Chapter 9. Appendix One contains a representative image compendium of the petrographic features observed in the paleokarst filling sequence of Fault N. Appendix Two sets out the raw data from the geochemical analysis. The paleokarst analysis using different disciplines provides a complete characterization of paleokarst heterogeneity and enables us to elucidate the controls of the system.

Coupled Thermo-Hydro-Chemical (THC) Modeling of Hypogene Karst Evolution in a Prototype Mountain Hydrologic System, 2011, Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G.

Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths grows to a point where the permeability is large enough for the onset of buoyant convection. As a result, a multitude of buoyant convection cells form that take on a two-dimensional (2D) maze-like appearance, which could represent a 2D analog of the three-dimensional (3D) mazework pattern widely thought to be characteristic of hypogene cave systems. Although computational limitations limited us to 2D, we suggest that similar process interactions in a 3D network of fractures and faults could produce a 3D mazework.

Computational Investigation of Fundamental Mechanisms Contributing to Fracture Dissolution and the Evolution of Hypogene Karst Systems, 2011, Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G. , Stauffer P. H.

Hypogene karst systems evolve by dissolution resulting from the cooling of water flowing upward against the geothermal gradient in limestone formations. We present a comprehensive coupled-process model of fluid flow, heat transfer, reactive transport and buoyancy effects to investigate the origin of hypogene karst systems by fracture dissolution. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. Our formulation inherently incorporates mechanisms such as “mixing corrosion” that have been implicated in the formation of hypogene cave systems. It also allows for rigorous representation of temperature-dependent fluid density and its consequences at various stages of karstification. The model is applied to investigate karstification over geological time scales in a network of faults/fractures that serves as a vertical conduit for upward flow. We considered two different conceptual hydrogeologic models. In the first model, the upward flow is controlled by a constant pressure gradient. In the second model, the flow is induced by topographic effects in a mountainous hydrologic system. During the very early stages of fracture growth, there is a positive feedback between fluid flow rate, heat transfer and dissolution. In this stage the dissolution rate is largely controlled by the retrograde solubility of calcite and aperture growth occurs throughout the fracture. For the first model, there is a period of slow continuous increase in the mass flow rate through the fracture, which is followed by an abrupt rapid increase. We refer to the time when this rapid increase occurs as the maturation time. For the second model of a mountainous hydrologic system, the fluid flux through the fracture remains nearly constant even though the fracture permeability and aperture increase. This is largely because the permeability of the country rock does not increase significantly. While this limits the fluid flux through the system, it does not impede karstification. At later stages, forced convection and buoyant convection effects arise in both models due to the increased permeability of the evolving fracture system. Our results suggest that there is s strong tendency for buoyant convection cells to form under a wide range of conditions. A modified Rayleigh number provides a unified quantitative criterion for the onset of buoyant convection across all cases considered. Once buoyant convection cells are set up, dissolution is sustained in the upward flow portions of the cells, while precipitation occurs in the regions of downward flow. We discuss the implications of this type of flow pattern for the formation of hot springs and mazework caves, both of which are characteristic of hypogene karst environments. We also investigate the sensitivity of karst evolution to various physical and geochemical factors.

Book Review: Karst Evolution in the South Mediterranean Area EnvironmentalImpact on Human Life and Civil Planning, 2012, Piccini, Leonardo

Speleogenesis, Hypogenic, 2012, Klimchouk, Alexander

Recognition of the cave development at depths below the near-surface environment, largely during mesogenesis by processes not directly related to the surface, signifies a major paradigm shift in karst science, previously overwhelmingly dominated by the epigene concepts and models. Such caves form by upwelling waters of meteoric and deeper origins driven by hydrostatic pressure and other sources of energy. They occur widely through the upper part of the Earth’s crust, although become available for direct study only when shifted to the shallow subsurface during uplift and erosion, or through mines or boreholes. Hypogenic caves form in different rocks in a wide range of geological and tectonic settings and include some of the largest known caves in the world. Hypogene karst is one of the fundamental categories of karst, at least of equal importance with more familiar epigenic karst. The more comprehensive approach to karst that emerges implies that speleogenesis should be viewed in time scales of the host rock life, in the context of its diagenetic evolution and the evolution of basin-scale groundwater circulation regimes and systems in response to tectonic processes and geomorphic development. The rapidly evolving deeper understanding of hypogene speleogenesis has broad implications for many applied fields such as prospecting and characterization of hydrocarbon reservoirs and mineral resources, groundwater management, geological engineering, and related activities.

Hypogene karst of Simferopol (Crimean fore-mountains) and its evolution, 2012, Amelichev G. N. , Dmitrieva A. Y. , Samokhin G. V.

In the limits of the urbanized territories of the fore-mountain Crimea, the amount of emergency situation caused by karst grows rapidly. At the same time indexes of intensity of modern karst processes are low, and environmental conditions are barely favourable for karst development. This disparity is settled on the basis of application of new ideas and concepts of geology, hydrogeology and speleogenesis, which have been integrated in domestic karstology relatively recently. In Simferopol, the capital of Crimea, features of relict hypogene karst are revealed, which are powerful stimulus of development of other negative exogeodynamic processes. The morfologo-genetic and age-dependent re-interpretation of karst features is performed. Superficial and underground forms are described. The article highlights main stages of karst evolution in the city. The growth of karst hazards in Simferopol is related to antropogenic activity, resulting in activation of relict hypogene karst features.

MODELLING THE EVOLUTION OF KARST AQUIFERS IN THREE DIMENSIONS/Conceptual models and realistic scenarios Inaugural dissertation/ zur Erlangung des Doktorgrades Dr. rer. nat. am Fachbereich Geowissenschaften im Institut fur Geologische Wissenschaften der Fr, 2013, Hiller, Thomas

This work presents the development of three dimensional karst evolution models for various settings and conditions. As karst aquifers are very sensitive to changes of their hydraulic boundary conditions a comprehensive understanding of the governing processes inside a karst aquifer is indispensable. Especially if a karst aquifer is inuenced by anthropogenic utilization like e.g. the construction of a dam site, the resulting changes inside the aquifer need to be understood as good as possible to prevent any unpredictable incidents. The use of numerical models to simulate the development of a karst aquifer is therefore a suitable tool in the preliminary investigations. It will be shown that simple three dimensional damsite models can be used to evaluate the parameters that control the karst aquifer evolution. Based on these simple models an enhanced three dimensional model of a real damsite is developed. This model is used to simulate the evolution of the aquifer close to this damsite and to expose how the construction of the dam inuenced the nearby bedrock signicantly. It is shown that the karstied zone around the dam site is the reason for the subsidence of an adjacent highway. The presented numerical results can be veried by eld observations. Additionally to the damsite models a three dimensional model approach is presented that describes the formation of large collapse dolines. Collapse dolines are signicant surface features of karst landscapes and their evolution which is usually linked to a subsurface karst system is of high interest in the karst community. To simulate the evolution and interaction of such a doline system, a three dimensional model with several spatially distributed dolines is used. There, based on the concept of a mechanically weakened crushed zone, the evolution over time is presented. The applied collapsing mechanism used in this work also allows to estimate the bedrock removal and surface lowering over time. The determined rates are in good agreement with values reported in literature

Hypogene Speleogenesis, its hydrogeological significance and role in karst evolution (in Russian), 2013, Klimchouk A. B.

The book examines empirical and theoretical regularities of hypogene speleogenesis and reveals its hydrogeological significance and the role in karst evolution. It is demonstrated that hypogene karst, along with epigenic karst, is the fundamental and wide spread genetic variety of karst, which nature and peculiar features call for revision and refinement of some basic notions of the general karst paradigm. A new approach is advocated to a definition of the notion of karst, where the latter is viewed as a specific groundwater circulation system with key properties determined by speleogenesis.

It is shown that major distinctions in mechanisms of the development of karstic void-conduit structures (types of speleogenesis) are determined by hydrodynamic peculiarities of confined and unconfined groundwater systems, and by the circulation vector. An evolutionary classification of karst is elaborated, which main categories cumulatively reflect its origin and characterize its most essential properties. Hypogene karst is a natural stage in the evolution of karst groundwater circulation geosystems in the course of regressive lithogenesis and hydrogeological cycles.

The book reveals principal regional regularities and type settings of hypogene speleogenesis, and describes its functional, structural and morphological peculiar features. It demonstrates the significance of hypogene speleogenesis in the formation of hydrogenic deposits of mineral resources and hydrocarbons in soluble strata and adjacent formations, and its role in karst hazards. The genetic and evolutionary approach is outlined and advocated in dealing with karst-related applied issues of hydrogeology, geological engineering, petroleum and ore geology.

Karstification of Dolomitic Hills at south of Coimbra (western-central Portugal) - Depositional facies and stratigraphic controls of the (palaeo)karst affecting the Coimbra Group (Lower Jurassic), 2014, Dimuccio, Luca Antonio

An evolutionary model is proposed to explain the spatio-temporal distribution of karstification affecting the Lower Jurassic shallow-marine carbonate succession (Coimbra Group) of the Lusitanian Basin, cropping out in the Coimbra-Penela region (western-central Portugal), in a specific morphostructural setting (Dolomitic Hills). Indeed, in the Coimbra Group, despite the local lateral and vertical distributions of dolomitic character and the presence of few thick sandy-argillaceous/shale and marly interbeds, some (meso)karstification was identified, including several microkarstification features. All types of karst forms are commonly filled by autochthonous and/or allochthonous post-Jurassic siliciclastics, implying a palaeokarstic nature.

The main aim of this work is to infer the interplay between depositional facies, diagenesis, syn- and postdepositional discontinuities and the spatio-temporal distribution of palaeokarst. Here, the palaeokarst concept is not limited to the definition of a landform and/or possibly to an associated deposit (both resulting from one or more processes/mechanisms), but is considered as part of the local and regional geological record.

Detailed field information from 21 stratigraphic sections (among several dozens of other observations) and from structural-geology and geomorphological surveys, was mapped and recorded on graphic logs showing the lithological succession, including sedimentological, palaeontological and structural data. Facies determination was based on field observations of textures and sedimentary structures and laboratory petrographic analysis of thin-sections. The karst and palaeokarst forms (both superficial and underground) were classified and judged on the basis of present-day geographic location, morphology, associated discontinuities, stratigraphic position and degree of burial by post-Jurassic siliciclastics that allowed to distinguish a exposed karst (denuded or completely exhumed) than a palaeokarst (covered or partially buried).

A formal lithostratigrafic framework was proposed for the local ca. 110-m-thick combined successions of Coimbra Group, ranging in age from the early Sinemurian to the early Pliensbachian and recorded in two distinct subunits: the Coimbra formation, essentially dolomitic; and the overlying S. Miguel formation, essentially dolomitic-limestone and marly-limestone.

The 15 identified facies were subsequently grouped into 4 genetically related facies associations indicative of sedimentation within supra/intertidal, shallow partially restricted subtidal-lagoonal, shoal and more open-marine (sub)environments - in the context of depositional systems of a tidal flat and a very shallow, inner part of a low-gradient, carbonate ramp. In some cases, thick bedded breccia bodies (tempestites/sismites) are associated to synsedimentary deformation structures (slumps, sliding to the W to NW), showing the important activity of N–S and NNE–SSW faults, during the Sinemurian. All these deposits are arranged into metre-scale, mostly shallowing-upward cycles, in some cases truncated by subaerial exposure events. However, no evidence of mature pedogenetic alteration, or the development of distinct soil horizons, was observed. These facts reflect very short-term subaerial exposure intervals (intermittent/ephemeral), in a semiarid palaeoclimatic setting but with an increase in the humidity conditions during the eogenetic stage of the Coimbra Group, which may have promoted the development of micropalaeokarstic dissolution (eogenetic karst).

Two types of dolomitization are recognized: one (a) syndepositional (or early diagenetic), massive-stratiform, of “penesaline type”, possibly resulting from refluxing brines (shallow-subtidal), with a primary dolomite related to the evaporation of seawater, under semiarid conditions (supra/intertidal) and the concurrent action of microbial activity; another (b) later, localized, common during diagenesis (sometimes with dedolomitization), particularly where fluids followed discontinuities such as joints, faults, bedding planes and, in some cases, pre-existing palaeokarstic features.

The very specific stratigraphic position of the (palaeo)karst features is understood as a consequence of high facies/microfacies heterogeneities and contrasts in porosity (both depositional and its early diagenetic modifications), providing efficient hydraulic circulation through the development of meso- and macropermeability contributed by syn- and postdepositional discontinuities such as bedding planes, joints and faults. These hydraulic connections significantly influenced and controlled the earliest karst-forming processes (inception), as well as the degree of subsequent karstification during the mesogenetic/telogenetic stages of the Coimbra Group. Multiple and complex karstification (polyphase and polygenic) were recognized, including 8 main phases, to local scale, integrated in 4 periods, to regional scale: Jurassic, Lower Cretaceous, pre-Pliocene and Pliocene-Quaternary. Each phase of karstification comprise a specific type of (palaeo)karst (eogenetic, subjacent, denuded, mantled-buried and exhumed).

Finally, geological, geomorphological and hydrogeological characteristics allowed to describe the local aquifer. The elaborated map of intrinsic vulnerability shows a karst/fissured and partially buried aquifer (palaeokarst) with high to very high susceptibility to the contamination.

The karst paradigm: changes, trends and perspectives, 2015, Klimchouk, Alexander

The paper examines representative definitions of karst (21), and discusses some concepts that influenced the modern un­derstanding of the phenomenon. Several trends are discussed that took karst science beyond the limits of the traditional par­adigm of karst. Dramatic progress in studies of speleogenesis plays the most significant role in changes taking place in the general understanding of karst. Also important is an adoption of the broad perspective to karst evolution which goes beyond the contemporary geomorphologic epoch and encompasses the entire life of a geological formation. Speleogenesis is viewed as a dynamic hydrogeological process of self-organization of the permeability structure in soluble rocks, a mechanism of the specific evolution of the groundwater flow system. The result is that these systems acquire a new, "karstic", quality and more complex organization. Since almost all essential attributes of karst owe their origin to speleogenesis, the latter is considered as the primary mechanism of the formation of karst. Two fundamental types of speleogenesis, hypogene and epigene, differentiate mainly due to distinct hydrodynamic characteristics of the respective groundwater flow systems: (1) of layered aquifer systems and fracture-vein flow systems of varying depths and degrees of confinement, and (2) of hydrodynamically open, near-surface unconfined systems. Accordingly, two major genetic types of karst are distinguished: hypogene and epigene. They differ in many characteristics, notably in relationships with the surface, hydrogeological behaviour, groundwater quality, and the areas of practical importance and approaches to solving karst-related issues. Although views on essential attributes of karst have been clearly changing, this was not reflected in definitions of the notion which are in broad use in the earth-science literature. A refined approach is suggested to the notion of karst in which it is viewed as a groundwater (fluid) flow system of a specific kind, which has acquired its peculiar properties in the course of speleogenesis.

Results 46 to 58 of 58
You probably didn't submit anything to search for