Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That knots is various methods of securing or tying ropes or webbing material together by cavers [13]. see also prusik knot; prusiking.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for karst terrains (Keyword) returned 67 results for the whole karstbase:
Showing 61 to 67 of 67
Do carbonate karst terrains affect the global carbon cycle?, 2013, Martin Jonathan B. , Brown Amy, Ezell John

Carbonate minerals comprise the largest reservoir of carbon in the earth’s lithosphere, but they are generally assumed to have no net impact on the global carbon cycle if rapid dissolution and precipitation reactions represent equal sources and sinks of atmospheric carbon. Observations of both terrestrial and marine carbonate systems indicate that carbonate minerals may simultaneously dissolve and precipitate within different portions of individual hydrologic systems. In all cases reported here, the dissolution and precipitation reactions are related to primary production, which fixes atmospheric CO2 as organic carbon, and the subsequent remineralization in watersheds of the organic carbon to dissolved CO2. Deposition of carbonate minerals in the ocean represents a flux of CO2 to the atmosphere. The dissolution of oceanic carbonate minerals can act either as a sink for atmospheric CO2 if dissolved by carbonic acid, or as a source of CO2 if dissolved through sulfide oxidation at the freshwater-saltwater boundary. Since dissolution and precipitation of carbonate minerals depend on ecological processes, changes in these processes due to shifts in rainfall patterns, earth surface temperatures, and sea level should also alter the potential magnitudes of sources and sinks for atmospheric CO2 from carbonate terrains, providing feedbacks to the global carbon cycle that differ from modern feedbacks.


Sagging and collapse sinkholes over hypogenic hydrothermal karst in а carbonate terrain, 2014, Frumkin A. , Zaidner Y. , Na'aman I. , Tsatskin A. , Porat N. , Vulfson L.

We show that clusters of karst sinkholes can occur on carbonate hypogene karst terrains. Unlike common doline karst of dissolution origin, the studied sinkholes form mainly by sagging and collapse. Thermal survey, OSL dating and morphologic analysis during quarrying and excavations are applied to study the sinkholes at the Ayyalon karst, Israel. The thermal survey shows the spatial pattern of rising warm water plumes, whose temperature is > 2 °C warmer than the surrounding aquifer water. These plumes dissolve the limestone, creating large voids and maze caves. Mass wasting forms surface sinkholes mainly by sagging and collapse. Both types of deformation often occur within the same depression. Lack of hydrologic connection between the surface and underground voids constrain drainage and promote rapid accumulation of colluvium, dust and pedogenic clays. These have filled the sinkholes up to their rim before the late Holocene. OSL dating constrains the rate of sediment accumulation within the sinkholes. The average filling rate (thickness divided by elapsed time) is ~ 47 mm ka− 1 for the last 53 ± 4 ka in Sinkhole 1, while in Sinkhole 2 (“Nesher Ramla karst depression”), the rate is ~ 61 mm ka− 1 from ~ 200 to 78 ka, and ~ 173 mm ka− 1 since ~ 78 ka. Between ~ 170 and 78 ka, Sinkhole 2 was intensively used by Middle Paleolithic hominins. The studied sinkholes may be considered as a type locality for hypogene sinkhole terrain on carbonate rocks.


Sinkholes, pit craters, and small calderas: Analog models of depletion-induced collapse analyzed by computed X-ray microtomography, 2014,

Volumetric depletion of a subsurface body commonly results in the collapse of overburden and the formation of enclosed topographic depressions. Such depressions are termed sinkholes in karst terrains and pit craters or collapse calderas in volcanic terrains. This paper reports the first use of computed X-ray microtomography (?CT) to image analog models of small-scale (~< 2 km diameter), high-cohesion, overburden collapse induced by depletion of a near-cylindrical (“stock-like”) body. Time-lapse radiography enabled quantitative monitoring of the evolution of collapse structure, velocity, and volume. Moreover, ?CT scanning enabled non-destructive visualization of the final collapse volumes and fault geometries in three dimensions. The results illustrate two end-member scenarios: (1) near-continuous collapse into the depleting body; and (2) near-instantaneous collapse into a subsurface cavity formed above the depleting body. Even within near-continuously collapsing columns, subsidence rates vary spatially and temporally, with incremental accelerations. The highest subsidence rates occur before and immediately after a surface depression is formed. In both scenarios, the collapsing overburden column undergoes a marked volumetric expansion, such that the volume of subsurface depletion substantially exceeds that of the resulting topographic depression. In the karst context, this effect is termed “bulking”, and our results indicate that it may occur not only at the onset of collapse but also during progressive subsidence. In the volcanic context, bulking of magma reservoir overburden rock may at least partially explain why the volume of magma erupted commonly exceeds that of the surface depression.


A review on natural and human-induced hazards and impacts in karst, 2014, Gutiérrez Francisco, Parise Mario, De Waele Jo, Jourde Hervé

Karst environments are characterized by distinctive landforms related to dissolution and a dominant subsurface drainage. The direct connection between the surface and the underlying high permeability aquifers makes karst aquifers extremely vulnerable to pollution. A high percentage of the world population depends on these water resources. Moreover, karst terrains, frequently underlain by cavernous carbonate and/or evaporite rocks, may be affected by severe ground instability problems. Impacts and hazards associatedwith karst are rapidly increasing as development expands upon these areas without proper planning taking into account the peculiarities of these environments. This has led to an escalation of karst-related environmental and engineering problems such as sinkholes, floods involving highly transmissive aquifers, and landslides developed on rocks weakened by karstification. The environmental fragility of karst settings, togetherwith their endemic hazardous processes, have received an increasing attention from the scientific community in the last decades. Concurrently, the interest of planners and decision-makers on a safe and sustainable management of karst lands is also growing. This work reviews the main natural and human-induced hazards characteristic of karst environments, with specific focus on sinkholes, floods and slope movements, and summarizes the main outcomes reached by karst scientists regarding the assessment of environmental impacts and their mitigation.


Evaporite karst in three interior layered deposits in Iani Chaos, Mars, 2015,

This paper describe the karst landforms observed in three interior layered deposits located in Iani Chaos, a large depression located in the equatorial region of Mars, characterised by spectral signatures of monohydrated and polyhydrated sulfate such as kieserite and gypsum. A morphological and morphometric survey of the ILD surface morphologies through an integrated analysis of the available Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) highlighted the presence of depressions of various shapes and sizes. These Martian landforms interpreted as doline of polygenetic origin resemble similarly karst landforms that can be observed both in different karst terrains on Earth and in other regions of Mars. The karst landforms observed suggest a climatic change and the presence of liquid water, probably due to ice melting, in the late Amazonian age.


Turkish karst aquifers, 2015, Gunay G. , Guner N. , Tork K.

One third of Turkey’s surface is underlain by carbonate rocks that have been subdivided into four karst regions. The carbonate rock units are about 200 km wide along the Taurus Mountains that attain elevations of 2500 m. Karst features of western Turkey bordering the Aegean and Mediterranean seas demonstrate the tectonic, lithological and climatic controls on the occurrence, movement, and chemical characteristics of groundwater. In Turkey all karstic feature, such as lapies, caves, sinkholes, uvalas, poljes, ground river valleys developed in all karstic areas. Karstification is related not only to the thickness and to purity of limestone, climate and height but also to tectonic movements. Water resources of karst terrains of Turkey are relatively rich and as such are very important for the economic development of the country. High mountain chains, very often associated with the karst terrains, are responsible for some important and beneficial characteristics of these water resources. Four karst regions are: (1) Taurus karst region, (2) southeast Anatolia karst region, (3) central Anatolia karst region, and (4) northwest Anatolia and Thrace karst regions.


The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States, 2015,

Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and main-tains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.


Results 61 to 67 of 67
You probably didn't submit anything to search for