Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That recharge area is an area in which water reaches the zone of saturation by surface infiltration [22]. see also intake area.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for carbonate aquifers (Keyword) returned 89 results for the whole karstbase:
Showing 76 to 89 of 89
Deep confined karst detection, analysis and paleo-hydrology reconstruction at a basin-wide scale using new geophysical interpretation of borehole logs, 2011, Laskow M. , Gendler M. , Goldberg I. , Gvirtzman H. , Frumkin A.

Deep karst voids can be identified by a new method of geophysical interpretation of commonly used borehole logs in deeply confined carbonate aquifers. We show that deep, buried karst voids can be characterized by combining this geophysical interpretation together with geological and hydrological data, and with known speleological constraints. We demonstrate how this characterization can reveal past hydrological regimes and allow mapping of karst distribution on a basin-wide scale. A combined analysis of geophysical, geological, hydrological, and speleological data in the confined Yarkon–Taninim aquifer, Israel, led us to reconstruct past groundwater levels at different relief and sea levels, with the karst voids as a marker for long-term flow close to the water table. Paleo-canyons along the Mediterranean Sea shoreline strongly affected the region’s paleo-hydrology, by serving as major outlets of the aquifer during most of the Cenozoic. We conclude that intensive karstification was promoted by flow periods of longer duration and/or higher flux and flow velocities close to the aquifer’s past and present outlets. In addition, we suggest that karst voids found under shallow confinement were developed by renewed aggressivity due to hypogene water rising in cross-formational flow becoming mixed with fresh lateral water flow from the east.


The nature and distribution of flowing features in a weakly karstified porous limestone aquifer, 2012, Maurice L. D. , Atkinson T. C. , Barker J. A. , Williams A. T. , Gallagher A. J.

The nature and distribution of flowing features in boreholes in an area of approximately 400 km2 in a weakly karstic porous limestone aquifer (the Chalk) was investigated using single borehole dilution tests (SBDTs) and borehole imaging. One-hundred and twenty flowing features identified from SBDTs in 24 boreholes have densities which decrease from _0.3 m_1 near the water table to _0.07 m_1 at depths of more than 40 m below the water table; the average density is 0.20 m_1. There is some evidence of regional lithological control and borehole imaging of three boreholes indicated that most flowing features are associated with marls, hardgrounds and flints that may be developed at a more local scale. Borehole imaging also demonstrated that many flowing features are solutionally enlarged fractures, suggesting that even in carbonate aquifers where surface karst is developed on only a small scale, groundwater flow is still strongly influenced by dissolution. Fully connected solutional pathways can occur over 100s, sometimes 1000s of metres. However, conduits, tubules and fissures may not always be individually persistent along a flowpath, instead being connected together and also connected to unmodified fractures to create a relatively dense network of voids with variable apertures (<0.1 cm to >15 cm). Groundwater therefore moves along flowpaths made up of voids with varying shape and character. Local solutional development of fractures at significant depths below the surface suggests that mixing corrosion and in situ sources of acidity may contribute to solutional enhancement of fractures. The study demonstrates that single borehole dilution testing is a useful method of obtaining a large dataset of flowing features at catchment-regional scales. The Chalk is a carbonate aquifer with smallscale surface karst development and this study raises the question of whether other carbonate aquifers with small-scale surface karst have similar characteristics, and what hydrological role small-scale dissolutional features play in highly karstic aquifers.


Delineating Protection Areas for Caves Using Contamination Vulnerability Mapping Techniques: The Case of Herreras Cave, Asturias, Spain, 2012, Marn A. I. , Andrea B. , Jimnezsnchez M. , Dominguezcuesta M. J. , Melndezasensio

 

Diverse approaches are adopted for cave protection. One approach is delineating protection areas with regard to their vulnerability to contamination. This paper reports the main results obtained from the delineation of a protection zone for Herrerı´as Cave, declared of Cultural Interest by the Asturias Regional Government, based on assessing its vulnerability to contamination. The cave is situated in a complex karst hydrogeologic environment in which groundwater flows from southwest to northeast, following the bedrock structure. A stream flows inside the cave, emerging in a spring located to the northeast of the system. Karst recharge occurs by direct infiltration of rainfall over limestone outcrops, concentrated infiltration of surface runoff in the watershed draining the cave, and deferred infiltration of water from alluvial beds drained by influent streams. The soil and vegetation covers are natural in the majority of the test site, but land uses in the watershed, including scattered farming, stock breeding, quarrying, and tourist use, are changing the natural characteristics and increasing the cave’s vulnerability to contamination. The procedure followed for delineating protection zones is based on the method COP+K that is specifically designed for vulnerability mapping of groundwater springs in carbonate aquifers. To cover the hydrological basin included in the cave’s catchment area, the protection zones established includes two different areas, the hydrogeological catchment basin and adjacent land that contributes runoff. Different degrees of protection in the zones have been proposed to make human activity compatible with conservation of the cave, and our results show remarkable differences from the protection zone previously proposed for the same area.


Carbonate Aquifers, 2012, Cunningham K. J. , Sukop M. C. , Curran H. A.

Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.


Carbonate Aquifers, 2012, Cunningham K. J. , Sukop M. C. , Curran H. A.

Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.


Effective porosity of a carbonate aquifer with bacterial contamination: Walkerton, Ontario, Canada, 2012, Worthington S. R. H. , Smart C. C. , Ruland W.

Preferential flow through solutionally enlarged fractures can be a significant influence on travel times and source area definition in carbonate aquifers. However, it has proven challenging to step beyond a conceptual model to implementing, parameterizing and testing an appropriate numerical model of preferential flow. Here both porous medium and preferential flow models are developed with respect to a deadly contamination of the municipal groundwater supply at Walkerton, Ontario, Canada. The preferential flow model is based on simple orthogonal fracture aperture and spacing. The models are parameterized from bore hole, gamma, flow and video logs resulting in a two order of magnitude lower effective porosity for the preferential flow model. The observed hydraulic conductivity and effective porosity are used to predict groundwater travel times using a porous medium model. These model predictions are compared to a number of independent estimates of effective porosity, including three forced gradient tracer tests. The results show that the effective porosity and hydraulic conductivity values closely match the preferential flow predictions for an equivalent fracture network of _10 m spacing of 1 mm fractures. Three tracer tests resulted in groundwater velocities of hundreds of meters per day, as predicted when an effective porosity of 0.05% was used in the groundwater model. These velocities are consistent with a compilation of 185 tracer test velocities from regional Paleozoic carbonate aquifers. The implication is that carbonate aquifers in southern Ontario are characterized by relatively low-volume dissolutionally enlarged fracture networks that dominate flow and transport. The porous matrix has large storage capacity, but contributes little to transport. Numerical models based on much higher porosities risk significantly underestimating capture zones in such aquifers. The hydraulic conductivity – effective porosity prediction framework provides a general analytical frame work for a preferential flow carbonate aquifer. Not only is the framework readily parameterized from borehole observations, but also it can be implemented in a conventional porous medium model, and critically tested using simple tracer tests.


Characterizing moldic and vuggy pore space in karst aquifers using borehole-wall, slabbed-core and thin-section images, 2013, Manda A. K. , Culpepper A. R.

Carbonate aquifers are prolific and important sources of potable water in many parts of the world owing toenlarged dissolution features that enhance porosity and interconnectivity. To better understand the variationsof pore space in different karst aquifers, image and geospatial analyses are used to analyze pore attributes(i.e., pore area and perimeter) in images of vuggy aquifers. Pore geometry and 2D porosity derivedfrom images of the moldic Castle Hayne and vuggy Biscayne aquifers are analyzed at three scales of observation:borehole televiewer, core and thin-section. The Castle Hayne and Biscayne aquifers are the foci of thisstudy because the pore spaces that control the hydrologic properties in each of these aquifers are markedlydifferent even though both of these carbonate reservoirs are prolific aquifers. Assessments of pore area,perimeter and shape index (a measure of shape complexity) indicate that pore geometries and pore complexitiesvary as a function pore type and scale of observation. For each aquifer type, the areas, perimetersand complexities of pores are higher at the larger scale of observation (e.g., borehole) than the smallerscale of observation (e.g., thin section). When the complexity of the moldic pores is compared to the complexityof vuggy pores, the results indicate that moldic pores are generally more complex than vuggy poresat the same scale of observation. Whereas estimates of 2D porosity from the borehole televiewer image ofthe vuggy aquifer are higher than those derived from the moldic aquifer, the range of 2D porosities is largerin core and thin section images for the vuggy aquifer than themoldic aquifer. A model for the development ofpores is presented that suggests that the coalescence of small pores with simple shapes leads to the growth oflarger pores with more complex shapes. The model suggests that the younger Biscayne aquifer is a moremature karst than the Castle Hayne aquifer.


Thermal springs and hypogenic karstification processes in flow system context, 2013, Madlsző, Nyi Judit, Erő, Ss Anita

Thermal springs and hypogenic karstification processes in flow system context, 2013, Mdlsző, Nyi Judit, Erő, Ss Anita

Uplifted unconfined and adjoining confined continental carbonate aquifers contain thermal water with marginal thermal springs as decisive discharge features connected to tectonic contact between the unconfined and confined part of the system. These areas are characterised by positive thermal anomaly, particular mineral precipitates and phre-atophyte vegetation. These systems are important not only as sources of thermal water but the confined parts of the system can serve as hydrocarbon reservoirs, moreover Mississippi Valley Type (MVT) ore deposits can also be connected to such environ-ments. Hypogenic speleogenesis can be active at such marginal discharge zones of groundwater due to the direct corrosive effect of deep originated fluids. These different processes are known from the literature however their relationships have not been revealed comprehensively. The application of regional groundwater flow system theory and evaluation can give a chance to understand the common origin of these different processes, which is moving groundwater. The Buda Thermal Karst offers an exception-al natural laboratory where groundwater flow systems and their effect on rock matrix and the environment can be examined and proved directly. Moreover as new discharge phenomenon a karst corrosive biofilm was recognized here. The presentation displays the most important conclusions which can be generalized for areas with similar hydro-geological settings. The research is supported by the NK 101356 OTKA research grant


Characterisation and modelling of conduit restricted karst aquifers – Example of the Auja spring, Jordan Valley, 2014, Schmidta Sebastian, Geyera Tobias, Guttmanb Joseph, Mareic Amer, Riesd Fabian, Sauter Martin

The conduit system of mature karstified carbonate aquifers is typically characterised by a high hydraulic conductivity and does not impose a major flow constriction on catchment discharge. As a result, discharge at karst springs is usually flashy and displays pronounced peaks following recharge events. In contrast, some karst springs reported in literature display a discharge maximum, attributed to reaching the finite discharge capacity of the conduit system (flow threshold). This phenomenon also often leads to a non-standard recession behaviour, a so called “convex recession”, i.e. an increase in the recession coefficient during flow recession, which in turn might be used as an indicator for conduit restricted aquifers. The main objective of the study is the characterisation and modelling of those hydrogeologically challenging aquifers. The applied approach consists of a combination of hydrometric monitoring, a spring hydrograph recession and event analysis, as well as the setup and calibration of a non-linear reservoir model. It is demonstrated for the Auja spring, the largest freshwater spring in the Lower Jordan Valley. The semi-arid environment with its short but intensive precipitation events and an extended dry season leads to sharp input signals and undisturbed recession periods. The spring displays complex recession behaviour, exhibiting exponential (coefficient α) and linear (coefficient β) recession periods. Numerous different recession coefficients α were observed: ∼0.2 to 0.8 d−1 (presumably main conduit system), 0.004 d−1 (fractured matrix), 0.0009 d−1 (plateau caused by flow threshold being exceeded), plus many intermediate values. The reasons for this observed behaviour are the outflow threshold at 0.47 m3 s−1 and a variable conduit–matrix cross-flow in the aquifer. Despite system complexity, and hence the necessity of incorporating features such as a flow threshold, conduit–matrix cross-flow, and a spatially variable soil/epikarst field capacity, the developed reservoir model is regarded as relatively simplistic. As a number of required parameters were calculated from the hydrogeological analysis of the system, it requires only six calibration parameters and performs well for the highly variable flow conditions observed. Calculated groundwater recharge in this semi-arid environment displays high interannual variability. For example, during the 45-year simulation period, only five wet winter seasons account for 33% of the total cumulative groundwater recharge.


Characteristics of channel networks in unconfi ned carbonate aquifers, 2014,

Carbonate aquifers are some of most challenging to characterize because dissolution can greatly enhance permeability, but its effects are often difficult to determine. This study analyzes data from caves, wells, and tracer tests to explore the extent of solution channel networks and the factors that influence their development. The nonlinear dissolution kinetics of calcite, mixing of waters with different CO2 concentrations, and unstable dissolution fronts all promote the development of solution channels, which are widespread in unconfined carbonate aquifers. Fractures are important for guiding channels at a local scale, but hydraulic gradients are the dominant control at a regional scale. Channels provide continuous, large-aperture pathways that result in rapid groundwater flow. Small channels are much more abundant than large channels, and often account for most of the permeability measured in wells. Caves represent the largest channels; they are more common in limestone than in dolostone, and the development of caves rather than smaller channels is also favored where there is sparse fracturing, low matrix porosity, and the presence of sinking stream recharge rather than percolation recharge. Solution channel networks have fractal properties, and their presence explains why carbonate aquifers have higher permeability than aquifers in any other rock type.


Characteristics of channel networks in unconfined carbonate aquifers, 2014, Worthington, Stephen R. H.

Carbonate aquifers are some of most challenging to characterize because dissolution can greatly enhance permeability, but itseffects are often diffi cult to determine. This study analyzes data from caves, wells, and tracer tests to explore the extent of solution channel networks and the factors that infl uence their development. The nonlinear dissolution kinetics of calcite, mixing of waters with different CO2 concentrations, and unstable dissolution fronts all promote the development of solution channels, which are widespread in unconfi ned carbonate aquifers. Fractures are important for guiding channels at a local scale, but hydraulic gradients are the dominant control at a regional scale. Channels provide continuous, large-aperture pathways that result in rapid groundwater fl ow. Small channels are much more abundant than large channels, and often account for most of the permeability measured in wells. Caves represent the largest channels; they are more common in limestone than in dolostone, and the development of caves rather than smaller channels is also favored where there is sparse fracturing, low matrix porosity, and the presence of sinking stream recharge rather than percolation recharge. Solution channel networks have fractal properties, and their presence explains why carbonate aquifers have higher permeability than aquifers in any other rock type


Hydrogeological Characteristics of Carbonate Formations of the Cuddapah Basin, India, 2014, Farooq Ahmad Dar

Karst hydrogeology is an important field of earth sciences as the aquifers in carbonate formations represent vital resource of groundwater that feeds a large part of the world population particularly in semi-arid climates. These unique aquifers posses peculiar characteristics developed by dissolutional activities of water. Karst aquifers possess a typical hydrogeological setup from surface to subsurface. The aquifers are governed by slow groundwater flow in matrix porosity, a medium to fast flow in fractures and rapid flow in conduits and channels. This large variability in their properties makes the prediction and modeling of flow and transport very cumbersome and data demanding. The aquifers are vulnerable to contamination as the pollutants reach the aquifer very fast with little or no attenuation. The geomorphological and hydrogeological properties in these aquifers demand specific techniques for their study. The carbonate aquifers of the semi-arid Cuddapah basin were characterized based on geomorphological, hydrogeological and hydrochemical investigations. All the formations are highly karstified possessing one of the longest and deepest caves of India and few springs along with unique surface features. Karstification is still in progress but at deeper levels indicated by growing speleothems of different architectural size. Model of karstification indicates that lowering of base level of erosion resulted in the dissolution of deeper parts of the limestone as represented by paleo-phreatic conduits in the region. Moist conditions of the past were responsible for the karst development which has been minimized due to the onset of monsoon conditions. Karst has developed at various elevations representing the past base levels in the region.

The recharge processes in these aquifers are complex due to climatic and karst specificities. Point recharge is the major contributor which enters the aquifer as allogenic water. It replenishes the groundwater very rapidly. Diffuse recharge travels through soil and epikarst zone. Average annual recharge of semi-arid Narji limestone aquifer is 29% of the rainfall which occurs during 5-7 rain events in the year.

The hydrogeochemical characteristic of karst aquifers is quite varaible. A significant difference is observed in hydrochemistry. High concentrations of SO42-, Cl-, NO3- suggests the anthropogenic source particularly from agriculture. Local Meteoric Water Line of δ2H and δ18O isotopes of rain and groundwater shows a slope of 7.02. Groundwater isotope data shows more depletion in heavy isotopes -a result of high evaporation of the area. Groundwater samples show a trend with a slope of 4 and 3.1 for δ2H and δ18O respectively. Groundwater during dry months gets more fractionated due to higher temperature and little rainfall. The irrigated water becomes more enriched and then recharges the aquifer as depleted irrigation return flow. The isotopes show large variation in spring water. Few springs are diffuse or mixed type and not purely of conduit type in the area. Tracer results indicate that the tracer output at the sampling location depends on the hydrogeological setup and the nature of karstification.

The study has significantly dealt with in disclosing the typical characteristics of such aquifer systems and bringing out a reliable as well as detailed assessment of various recharges to the system. The groundwater chemistry has been elaborated to establish the nature of possible hydrochemical processes responsible for water chemistry variation in semi-arid karst aquifer. Such study has thrown light on the aquifers that are on one hand very important from social and strategic point of view and on the hand were left unattended from the detailed scientific studies.


The hydrogeology of high-mountain carbonate areas: an example of some Alpine systems in southern Piedmont (Italy), 2015,

The hydrogeological characteristics of some springs supplied by high-mountain carbonate rock aquifers, located in the south of Piedmont, in Italy, are presented in this work. The aquifers have different geological-structural conditions, including both deep and superficial karstification. Their catchment areas are located in a typical Alpine context at a high altitude of about 2000 m. These aquifers are ideal representations of the different hydrogeological situations that can be encountered in the high-altitude carbonate aquifers of the Mediterranean basin. It is first shown how the high-altitude zones present typical situations, in particular related to the climate, which control the infiltration processes to a great extent. Snowfall accumulates on the ground from November to April, often reaching remarkable thicknesses. The snow usually begins to melt in spring and continues to feed the aquifer for several months. This type of recharge is characterized by continuous daily variations caused by the typical thermal excursions. The hourly values are somewhat modest, but snowmelt lasts for a long time, beginning in the lower sectors and ending, after various months, in the higher areas. Abundant rainfall also occurs in the same period, and this contributes further to the aquifer supply. In the summer period, there is very little rainfall, but frequent storms. In autumn, abundant rainfall occurs and there are there fore short but relevant recharge events. It has been shown how the trend of the yearly flow of the high mountain springs is influenced to a great extent by the snowmelt processes and autumn rainfall. It has also been shown, by means of the annual hydrographs of the flow and the electric conductivity of the spring water, how the different examined aquifers are characterized by very different measured value trends, according to the characteristics of the aquifer.

 


Results 76 to 89 of 89
You probably didn't submit anything to search for