Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That regolith is a general term for the layer of fragmental and unconsolidated rock material that nearly everywhere forms the surface of the land and overlies or covers the bedrock [6].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for velocity (Keyword) returned 102 results for the whole karstbase:
Showing 91 to 102 of 102
Scallops, 2012, Murphy, Phillip J.

Solutional sculpturing of cave walls can provide information on both the direction and discharge of water flow in a cave passage. Their asymmetry indicates the direction of ground water flow and their wavelength is inversely proportional to the flow velocity. Laboratory and field investigations have enabled the calculation of mean flow velocity from scallop wavelength data and thus the calculation of discharge at the time of scallop formation. Other hydraulic parameters may also be estimated from scallop measurements.

2D and 3D imaging of the metamorphic carbonates at Omalos plateau/polje, Crete, Greece by employing independent and joint inversion on resistivity and seismic data, 2012, Hamdan Hamdan, Economou Nikos, Kritikakis Giorgos, Andronikidis Nikos, Manoutsoglou Emmanuil, Vafidis Antonis, Pangratis Pangratis, Apostolidou Georgina

A geophysical survey carried out at Omalos plateau in Chania, Western Crete, Greece employed seismic as well as electrical tomography methods in order to image karstic structures and the metamorphic carbonates (Tripali unit and Plattenkalk group) which are covered by post-Mesozoic deposits (terra rossa, clays, sands and gravels). The geoelectrical sections image the metamorphic carbonates which exhibit a highly irregular relief. At the central part of the plateau the thickness of post-Mesozoic deposits (terra rossa, clays, sands and gravels) ranges from 40-130 m. A 3D resistivity image was generated by inverting resistivity data collected on a grid to the south west at the Omalos plateau. The 3D resistivity image delineated a karstic structure at a depth of 25 to 55 m. On the same grid the depth to the top of the karstified carbonates ranges from 25-70 m. This is also verified on the resistivity sections and seismic velocity sections along lines 5 and 7 of the above mentioned grid which are derived from the cross-gradients joint inversion.

Carbon cycle in the epikarst systems and its ecological effects in South China, 2012, Jiang Z. , Lian Y. , Qin X.

The carbon cycle in a global sense is the biogeochemical process by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the earth. For epikarst systems, it is the exchange of carbon among the atmosphere, water, and carbonate rocks. Southern China is located in the subtropical zone; its warm and humid weather creates favorable conditions for the dynamic physical, chemical, and ecological processes of the carbon cycle. This paper presents the mechanisms and characteristics of the carbon cycle in the epikarst systems in south China. The CO2 concentration in soils has clear seasonal variations, and its peak correlates well with the warm and rainy months. Stable carbon isotope analysis shows that a majority of the carbon in this cycle is from soils. The flow rate and flow velocity in an epikarst system and the composition of carbonate rocks control the carbon fluxes. It was estimated that the karst areas in south China contribute to about half of the total carbon sink by the carbonate system in China. By enhancing the movement of elements and dissolution of more chemical components, the active carbon cycle in the epikarst system helps to expand plant species. It also creates favorable environments for the calciphilic plants and biomass accumulation in the region. The findings from this study should help in better understanding of the carbon cycle in karst systems in south China, an essential component for the best management practices in combating rock desertification and in the ongoing study of the total carbon sink by the karst flow systems in China

Environmental Hydrogeological Study of Louros watershed, Epirus, Greece, 2012, Konstantina Katsanou

The present study aims to describe and characterize the Ionian zone karst formation concerning the karstification grade of carbonate formations and the development of aquifers, through the hydrogeological study of Louros River drainage basin, considering hydrological, hydrogeological and meteorological data, as well as major, trace element, rare earth element and isotope concentrations. It also aims to investigate basic karst properties such as storativity, homogeneity, infiltration coefficients and the parameters of the Louros basin hydrological balance.

To accomplish this aim daily discharge measurements obtained from Public Power Corporation at the Pantanassa station during the years 1956-1957, along with random discharge measurements from 15 springs along the basin performed by IGME between the years 1979-1989, daily meteorological data from 18 stations and 18 sets of potentiometric surface measurements from 38 sites were compiled. Additionally, chemical analyses on major and trace element concentrations of 42 rock samples and of five sets of water samples from 64 sampling sites, along with fourteen sets of successive periods in order to study the seasonal variation in the chemical composition of 11 springs and REE concentrations of 116 water samples. Moreover isotope ratios from 129 rain samples collected at five different altitudes, 331 samples of surface and groundwater samples, radon measurements on 21 groundwater samples and microbiological on 46 samples of surface and groundwater were evaluated. Daily runoff and random spring discharge missing data were completed applying the SAC-SMA and MODKARST simulation algorithms and the values of these parameters for the duration of the research (2008-2010) were predicted. The accuracy of the predicted values was tested applying statistical methods but also against observed values from in situ measurements performed during the same period (2008-2010).

Louros River drainage basin is located at the southern part of Epirus and covers an area of 953 km2. It is elongated and together with the adjacent basin of River Arachthos they constitute the major hydrographic systems discharging in the Amvrakikos Gulf. The main morphological features of the basin are elongated mountain ranges and narrow valleys, which are the result of tectonic and other geological processes mainly controlled by the limestone-“flysch” alternations. The length of the river’s major channel, which is parallel to the major folding direction (NNW-SSE), is 73.5 km. The mountainous part of the hydrogeological basin covers an area of 400 km2 and its endpoint was set at the Pantanassa station, where discharge measurements are performed. The underground limits of the basin coincides with the surface one, defined by the flysch outcrops at the western margin of the Ziros-Zalongo fault zone to the South, the application of isotope determinations and hydraulic load distribution maps at the North and East.

Geologically, Louros River drainage basin is composed of the Ionian zone formations. Triassic evaporites constitute the base of the zone overlain by a thick sequence of carbonate and clastic sedimentary rocks deposited from the Late Triassic to the Upper Eocene. In more detail, from base to top, the lithostratigraphical column of the zone includes dolomite and dolomitic limestone, Pantokrator limestone, Ammonitico Rosso, Posidonia Shales, Vigla limestone, Upper Senonian limestone, Palaeocene-Eocene limestone and Oligocene “flysch”. The major tectonic features of the regions are folds with their axes trending SW-NE at the northern part and NNW-SSE to NNE-SSW southern of the Mousiotitsa-Episkopiko-Petrovouni fault system and the strike-slip fault systems of Ziros and Petousi.

The evaluation of the daily meteorological data revealed that December is the most humid month of the year followed by January, whereas July and August are the driest months. Approximately 40-45% of the annual precipitation is distributed during the winter time and 30% during autumn. The mean annual precipitation ranges from 897.4 to 2051.8 mm and the precipitation altitude relationship suggests an increased precipitation with altitude at a rate of 84 mm/100 m. The maximum temperature is recorded during August and it may reach 40°C and the minimum during January. The temperature variation with the altitude is calculated at 0.61°C/100 m. The maximum solarity time is 377.8 h, recorded during July at the Arta station. December displays the highest relative humidity with a value of 84.2% recorded again at the Arta station. The highest wind velocity values are recorded at the Preveza station and similar velocities are also recorded at the Ioannina station. The real evapotranspiration in Louros drainage basin ranges between 27-39%. The potential evapotranspiration was calculated from the Ioannina station meteorological data, which are considered more representative for Louros basin, at 785.8 mm of precipitation according to Thornthwaite and at 722.0 mm according to Penman-Monteith.

According to the SAC-SMA algorithm the total discharge (surficial and underground) for the years 2008-2010 ranges between 61-73% of the total precipitation. The algorithm simulates the vertical percolation of rainwater in both unsaturated and saturated zones taking into account 15 parameters including the tension water capacity of the unsaturated zone, the maximum water storage capacity of both unsaturated and saturated zones, the water amount escaping into deeper horizons and not recorded at the basin’s outlet, the percentage of impermeable ground which is responsible for instant runoff, etc. These parameters are correlated to the hydrograph and are recalculated according to it. Two interesting aspects were pointed out from the discharge measurements and the algorithm application. The first is related to the maximum amount of free water, which can be stored at the basic flow of the karstic system, which is very high for the whole basin, reaching 1200 mm of precipitation and the second is the amount of water filtered to the deeper horizons, which reaches 0.098.

The discharge of individual karstic units was simulated applying the specialized MODKARST code. The code, which transforms precipitation to discharge resolving mathematical equations of non-linear flow using the mass and energy balance, successfully completed the time series of available data of spring discharge measurements for the period between the years 2008-2010.

Additionally, a number of useful parameters including spring recharge, delay period between precipitation and discharge, the storage capacity of the discharge area were also calculated by the MODKARST code. These data enabled the calculation of the annual infiltration coefficient for each one of the 15 springs and for the whole basin; the latter was found to range between 38-50% of annual precipitation. The total supply area was estimated approximately at 395 km2, which is consistent with the area of Louros hydrogeological basin calculated from hydrogeological data.

The 18 sets of water table measurements, each one corresponding to a different period, revealed that the aquifers of the intermediate part of Louros basin, which are developed in Quaternary alluvial sediments, are laterally connected to the carbonate formations of the individual karstic spring units, forming a common aquifer with a common water table.

Groundwater flow follows a general N-S direction from the topographic highs to the coastal area with local minor shifts to NE-SW and NW-SE directions. The artificial lake at the position of the Public Power Corporation’s Dam at the south of the region is directly connected to the aquifer and plays an important role in water-level variation. The water table contours display a higher gradient to the southern part due to the decreased hydraulic conductivity of the limestones close to Agios Georgios village. The decreased hydraulic conductivity is believed to be the reason for the development of the homonymous spring although the hydraulic load distributions suggest the extension of the aquifer to the south and a relation to the water level in Ziros Lake, boreholes and the Priala springs. The hydraulic gradient in the broader region ranges between 4-16‰. The absolute water level variation between dry and humid season ranges from 2 m at the South to 15-20 m to the North with an average of 9 m.

The hydrological balance of Louros River mountainous basin according to the aforementioned data is calculated as follows: The total precipitation between the years 2008-2010 ranged between 5.67E+08-9.8E+08 m3 and the discharge at Pantanassa site between 3.47E+08-6.83E+08 m3. The real evapotransiration ranged between 29-39% of the precipitation. The total discharge (runoff and groundwater) accounted for 61-73% of the precipitation, whereas the basic flow due to the percolation ranged between 34-38%. Considering a mean water level variation of 9 m, between the dry and humid season, the water amount constituting the local storage is 2025Ε+07 m3.

Statistical evaluation on spring discharge data and the recession curves analysis revealed three distinct levels with diverse karstic weathering along Louros basin coinciding to the upper, intermediate and low flow of Louros River, respectively. The developed karstic units are generally complex but simple individual units develop as well. The response of spring discharge to the stored water amounts is immediate but with relatively large duration suggesting the storage of large quantities of water and a well-developed system of karstic conduits, which however has not yet met its complete evolution. The karst spring’s units are homogeneous and each one is distinguished from different recession coefficients.

The three levels of flow are also distinguished from the duration curves, which point to individual units upstream, complex units receiving and transmitting water to the adjacent ones in the middle part and complex that only receive water from the upper. This distinguishment is also enhanced by the groundwater’s major ion concentrations, which reveal Ca-HCO3 water-type upstream, along with the isotopic composition at the same part. The prevalent Ca-HCO3-Cl-SO4 water-type in the middle part, the Na-Ca-Cl-SO4 water-type downstream and isotope variation confirms this distinguishment. Moreover, REE variation is also consistent with the three levels. The assumption of relatively large stored water reserves, which contribute to analogous “memory” of spring karstic units, as pointed out by autocorreletion functions is enhanced from SAC-SMA algorithm which premises an increased capacity at the lower zone of basic flow, as well as from the hydrochemical and isotopic composition of groundwater. Monitoring of the seasonal variation in groundwater composition revealed minor variations of hydrochemical parameters and remarkably stable isotopic composition. Both aspects can be explained by the existence of a considerable water body acting as a retarder to external changes.

The crosscorrelation functions suggest a well-developed karstic system, which however has not yet reached its complete maturity also confirmed from field observations. The same conclusion is extracted from the homogeneous evolution at the interval of each karstic unit as demonstrated from recession curves on spring hydrographs.

The results from hydrochemical analyses also revealed the effect of evaporitic minerals and phosphate-rich rocks in groundwater composition and confirmed the hydraulic relationships between surface and groundwater.

The study of the isotopic composition also contributed to exclude the potential connection between the Ioannina and Louros basins, confirmed the meteoric origin of groundwater and revealed the effect of seawater in the chemical composition of few sampling sites.

The microbiological research only revealed minor incidents of contamination and significant attenuation of microorganisms during periods of high discharge.

A Non-Linear Fluid-solid Coupling Mechanical Model Study for Paleokarst Collapse Breccia Pipes Under Erosion Effect, 2012, Yao Banghua, Mao Xianbiao, Zhang Kai, Cai Wei

In this research the seepage characteristics of Paleokarst collapse breccia pipes under particles erosion effect, and their water inrush mechanism were studied. In this paper, based on the seepage theory of pores media and the nonlinear mechanics theory, we deduced the transport equation of particles in Paleokarst collapse breccia pipes, obtained the seepage field equation for Paleokarst collapse breccia pipes, and investigated the porosity evolution equation under the effect of particles transport, building a nonlinear fluid-solid coupling model for Paleokarst collapse breccia pipes. Furthermore, we took the relationship between fluid and particle velocities as well as the effect of particle concentration on fluid property into account, and assumed the porosity in Paleokarst collapse breccia pipes obey Weibull distribution. Finally, we lead the model equations into the COMSOL Multiphysics to solve, obtaining the parameters including porosity, seepage velocity, particle concentration, water inflow evolution law as the time. The research results indicate that: (1) particles in Paleokarst collapse breccia pipes will be eroded and transport under the effect of fluid movement as the time, the concentration of particles behaved rapidly increased and then sharply decreased, and the porosity and seepage velocity grew quickly until reached the maximum value; (2) the seepage capacity for Paleokarst collapse breccia pipes initially grows slowly, while seepage velocity increases at an increasing rate with the growth and connectivity of porosity; (3) the porosity evolution under erosion effect in Paleokarst collapse breccia pipe is an important reason for Paleokarst collapse breccia pipe water inrush.

A laboratory study of tracer tomography, 2013, Brauchler R. , Bhm G. , Leven P. , Dietrich C. , Sauter M.

A tracer tomographic laboratory study was performed with consolidated fractured rock in three-dimensional space. The investigated fractured sandstone sample was characterized by significant matrix permeability. The laboratory transport experiments were conducted using gas-flow and gas-tracer transport techniques that enable the generation of various flow-field patterns via adjustable boundary conditions within a short experimental time period. In total, 72 gas-tracer (helium) tests were performed by systematically changing the injection and monitoring configuration after each test. For the inversion of the tracer breakthrough curves an inversion scheme was applied, based on the transformation of the governing transport equation into a form of the eikonal equation. The reliability of the inversion results was assessed with singular value decomposition of the trajectory density matrix. The applied inversion technique allowed for the three-dimensional reconstruction of the interstitial velocity with a high resolution. The three-dimensional interstitial velocity distribution shows clearly that the transport is dominated by the matrix while the fractures show no apparent influence on the transport responses.

Effects of sinuosity factor on hydrodynamic parameters estimation in karst systems: a dye tracer experiment from the Beyyayla Sinkhole (Eskişehir, Turkey), 2013, Aydin H. , Ekmekci M. , Soylu M. E.

The sinuosity factor (SF) is a critical value in karst systems in terms of estimating their hydrodynamic parameters including groundwater velocity, coefficient of dispersion, etc., through dye tracer experiments. SF has been used in a number of different dye tracer experiments in karstic systems to estimate a representative flow path. While knowing SF is crucially important in the estimation of hydrodynamic parameters, its calculation is associated with significant uncertainty due to the complexity of subsurface karstic features. And yet, only a few studies have discussed its uncertainties, which might lead some errors in estimation of hydrodynamic parameters from dye tracer experiment. In this study, dye tracer experiments were conducted in two consecutive years (2003 and 2004) representing low and high flow conditions in the Beyyayla sinkhole (Eskişehir, Turkey) where the flow path is well known. Uranine was used in experiments as a tracer and QTRACER computer program was used to determine the hydrodynamic properties of the Beyyayla karst system as well as to gain insights into the effects of SF from dye tracer experiments on estimated parameters. The results showed that the breakthrough curve follows a unimodal and a bimodal distribution in low and high flow conditions, respectively. These different distributions stem from the water transport mechanisms, where velocities were calculated as 58.2 and 93.6 m h−1 during low and high flow conditions observed in a spring emerging from the south side of the studied system. The results also show that the coefficient of dispersion, Reynolds number, and Peclet number increased and longitudinal dispersivity decreased with the higher flow rate. Furthermore, the estimated parameters did not vary with either the flow conditions or the tracer transit time, but they have shown some variations with SF. When SF was increased by 50 %, a change in these parameters was obtained in the range of 50–125 %.


Sudden cover-collapse sinkhole (doline) development is uncommon in the karstic Cretaceous-age Edwards limestone of central Texas. This paper presents a case-study of a sinkhole that formed within a stormwater retention pond (SWRP) in southwest Austin. Results presented include hydrogeologic characterizations, fate of stormwater, and mitigation of the sinkhole. On January 24, 2012, a 11 cm (4.5 in) rainfall filled the SWRP with about 3 m (10 ft) of stormwater. Subsequently, a sinkhole formed within the floor of a SWRP measuring about 9 m (30 ft) in diameter and 4 m (12 ft) deep. About 26.5 million liters (7 million gallons) of stormwater drained into the aquifer through this opening. To determine the path, velocity, and destination of stormwater entering the sinkhole a dye trace was conducted. Phloxine B was injected into the sinkhole on February 3, 2012. The dye was detected at one well and arrived at Barton Springs in less than 4 days for a minimum velocity of 2 km/day (1.3 mi/day).Review of pre-development 2-foot topographic contour and geologic maps reveals that the SWRP was built within a broad (5,200 m2; 6 acre), shallow depression bounded by two inferred NE-trending fault zones. Photographs taken during SWRP construction showed steep west-dipping bedrock in the northern SWRP wall. Following collapse of the sinkhole, additional hydrogeologic characterization included excavation to a depth of 6.4 m (21 ft), surface geophysics (resistivity), and rock coring. Geologic materials consisted mostly 89of friable, highly altered, clayey limestone consistent with epikarst in-filled with terra rosa providing a cover of the feature. Dipping beds, and fractured bedrock support proximity to the mapped fault zone. Geophysics and surface observations suggested a lateral pathway for stormwater flow at the junction between the wet pond’s impermeable geomembrane and compacted clay liner for the retention pond. The collapse appears to have been caused by stormwater down-washing poorly consolidated sediments from beneath the SWRP and into a pre-existing karst conduit system.

Mitigation of the sinkhole included backfill ranging from boulders to gravel, a geomembrane cover, and reinforced concrete cap. Additional improvements to the SWRP included a new compacted clay liner overlain by a geomembrane liner on the side slopes of the retention pond.

Identification of the Exchange Coefficient from Indirect Data for a Coupled Continuum Pipe-Flow Model, 2014, Wu X. , Kugler Ph. , Lu Sh.

Calibration and identification of the exchange effect between the karst aquifers and the underlying conduit network are important issues in order to gain a better understanding of these hydraulic systems. Based on a coupled continuum pipe-flow (CCPF for short) model describing flows in karst aquifers, this paper is devoted to the identification of an exchange rate function, which models the hydraulic interaction between the fissured volume (matrix) and the conduit, from the Neumann boundary data, i.e., matrix/conduit seepage velocity. The authors formulate this parameter identification problem as a nonlinear operator equation and prove the compactness of the forward mapping. The stable approximate solution is obtained by two classic iterative regularization methods, namely, the Landweber iteration and Levenberg-Marquardt method. Numerical examples on noisefree and noisy data shed light on the appropriateness of the proposed approaches

Sinkholes, pit craters, and small calderas: Analog models of depletion-induced collapse analyzed by computed X-ray microtomography, 2014,

Volumetric depletion of a subsurface body commonly results in the collapse of overburden and the formation of enclosed topographic depressions. Such depressions are termed sinkholes in karst terrains and pit craters or collapse calderas in volcanic terrains. This paper reports the first use of computed X-ray microtomography (?CT) to image analog models of small-scale (~< 2 km diameter), high-cohesion, overburden collapse induced by depletion of a near-cylindrical (“stock-like”) body. Time-lapse radiography enabled quantitative monitoring of the evolution of collapse structure, velocity, and volume. Moreover, ?CT scanning enabled non-destructive visualization of the final collapse volumes and fault geometries in three dimensions. The results illustrate two end-member scenarios: (1) near-continuous collapse into the depleting body; and (2) near-instantaneous collapse into a subsurface cavity formed above the depleting body. Even within near-continuously collapsing columns, subsidence rates vary spatially and temporally, with incremental accelerations. The highest subsidence rates occur before and immediately after a surface depression is formed. In both scenarios, the collapsing overburden column undergoes a marked volumetric expansion, such that the volume of subsurface depletion substantially exceeds that of the resulting topographic depression. In the karst context, this effect is termed “bulking”, and our results indicate that it may occur not only at the onset of collapse but also during progressive subsidence. In the volcanic context, bulking of magma reservoir overburden rock may at least partially explain why the volume of magma erupted commonly exceeds that of the surface depression.

Thermal damping and retardation in karst conduits, 2015, Luhmann A. J. , Covington M. D. , Myre J. M. , Perne M. , Jones S. W. , Alexander Jr. E. C. , Saar M. O

Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However,within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationshipsthat describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical simulations where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a multitracer experiment that provides some field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.


Calculating flux to predict future cave radon concentrations, 2016, Rowberry Matt, Marti Xavi, Frontera Carlos, Van De Wiel Marco, Briestensky Milos

Cave radon concentration measurements reflect the outcome of a perpetual competition which pitches flux against ventilation and radioactive decay. The mass balance equations used to model changes in radon concentration through time routinely treat flux as a constant. This mathematical simplification is acceptable as a first order approximation despite the fact that it sidesteps an intrinsic geological problem: the majority of radon entering a cavity is exhaled as a result of advection along crustal discontinuities whose motions are inhomogeneous in both time and space. In this paper the dynamic nature of flux is investigated and the results are used to predict cave radon concentration for successive iterations. The first part of our numerical modelling procedure focuses on calculating cave air flow velocity while the second part isolates flux in a mass balance equation to simulate real time dependence among the variables. It is then possible to use this information to deliver an expression for computing cave radon concentration for successive iterations. The dynamic variables in the numerical model are represented by the outer temperature, the inner temperature, and the radon concentration while the static variables are represented by the radioactive decay constant and a range of parameters related to geometry of the cavity. Input data were recorded at Driny Cave in the Little Carpathians Mountains of western Slovakia. Here the cave passages have developed along splays of the NE-SW striking Smolenice Fault and a series of transverse faults striking NW-SE. Independent experimental observations of fault slip are provided by three permanently installed mechanical extensometers. Our numerical modelling has revealed four important flux anomalies between January 2010 and August 2011. Each of these flux anomalies was preceded by conspicuous fault slip anomalies. The mathematical procedure outlined in this paper will help to improve our understanding of radon migration along crustal discontinuities and its subsequent exhalation into the atmosphere. Furthermore, as it is possible to supply the model with continuous data, future research will focus on establishing a series of underground monitoring sites with the aim of generating the first real time global radon flux maps.

Results 91 to 102 of 102
You probably didn't submit anything to search for