Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That model is 1. a conceptual, mathematical, or physical system obeying certain specified conditions, whose behavior is used to understand the physical system to which it is analogous in someway [22]. 2. a conceptual description and the associated mathematical representation of a system, subsystem, components, or condition that is used to predict chances from a baseline state as a function of internal and/or external stimuli and as a function of time and space [22]. 3. a simplified system bearing some physical similarity to a prototype [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for karst terrain (Keyword) returned 133 results for the whole karstbase:
Showing 121 to 133 of 133
Proceedings of the Thirteenth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, 2013,

These proceedings represent the talks, posters, and symposia presented at the 13th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, which took place in Carlsbad, New Mexico, at the NCKRI headquarters, May 6-10, 2013. This international conference series creates a better understanding of environmental issues and geohazards associated with karst environments.
This 480 page volume contains 52 peer-reviewed papers organized under the following headings: a) Engineering and Geotechnical Aspects of Karst, b) Evaporite Karst, c) Geophysical Investigations in Karst Terrain, d) Formation Processes of Karst and Sinkholes, e) Karst Hydrology, and f) Mapping and Management of Karst Regions.

KARST HAZARDS, 2013, Andreychouk Viacheslav, Tyc Andrzej

Karst hazards are an important example of natural hazards. They occur in areas with soluble rocks (carbonates, mostly limestone, dolomite, and chalk; sulfates, mostly gypsum and anhydrite; chlorides, mostly rock salt and potassium salt; and some silicates, quartzite and amorphous siliceous sediments) and efficient underground drainage. Karst is one of the environments in the world most vulnerable to natural and human-induced hazards. Karst hazards involve fast-acting processes, both on the surface and underground (e.g., collapse, subsidence, slope movements, and floods) and their effects (e.g., sinkholes, degraded aquifers, and land surface). They frequently cause serious damage in karst areas around the world, particularly in areas of intense human activity. Karst threat is the potential hazard to the life, health, or welfare of people and infrastructure, arising from the particular geological structure and function of karst terrains. The presence of underground cavities in the karst massif masks the threat from the hazards of collapse. This means that in some instances, the potential threats from karst, which are inherent features of the karst environment, become hazards. They range in category from potential to real. The term (karst hazards) is related to two other terms, used mostly in applied geosciences, particularly engineering geology – risk assessment and mitigation. Risk is the probability of an occurrence, and the consequential damages are defined as hazards. Risk assessment is the determination of quantitative or qualitative value of risk related to a concrete situation and a recognized hazard. Quantitative risk assessment requires calculations of two components: the magnitude of the potential loss and the probability that the loss will occur. Risk assessment is a step in a risk management. Mitigation may be defined as the reduction of risk to life and the environment by reducing the severity of collapse or subsidence, building subsidence-resistant constructions, restricting land use, etc.


The persistent drought of the 2012 summer in the Midwestern United States significantly impacted the health and vigor of Illinois’ crops. An unforeseen outcome of the extreme drought was that it provided a rare opportunity to examine and characterize the bedrock surface and underlying karst aquifer within the Driftless Area of northwestern Illinois. Complex networks of vegetated lines and polygonal patterns, herein referred to as crop lines, crisscrossed the dry summer landscape of Jo Daviess County. Initially, the crop lines were examined and photographed using a handheld digital camera on the ground and from a small aircraft at 300 meters altitude above ground level (AGL). The orientations, widths and horizontal separations of the lines were measured. Crop lines and their patterns and orientations were compared with those of crevices in outcrops, road cuts and quarries, and with lineaments seen in LiDAR elevation data of Jo Daviess County.
Primarily confined to alfalfa fields and, to a lesser extent, soybeans and corn, the crop lines are the result of a combination of extremely dry conditions, and a thin soil zone overlying fractured and creviced Galena Dolomite bedrock. The plants forming the lines tend to grow denser, taller (0.5 m vs 0.15 m) and darker/greener than those in adjacent areas. Alfalfa taproots are the deepest of the aforementioned crops extending up to 7 m below the surface. Groundwater and associated soil moisture within the vadose zone present within bedrock fractures and crevices provide the necessary moisture to sustain the overlying healthy plants, while the remaining area of the field exhibits stunted and sparse plant growth. Overall, the crop lines are a reflection of the creviced pattern of the underlying karst bedrock and associated karst aquifer, and reveal the degree and extent of karstification in eastern Jo Daviess County. The crop lines were consistent with the angular lines of adjacent streams that show a rectangular drainage pattern. Stream patterns like these are well known and are due to drainage controlled by crevice/fracture patterns in the top of bedrock. The lines appear to have been formed by two sets of fractures trending roughly north-south and east-west with occasional cross-cutting fractures/crevices. The east-west trending lines are consistent with tension joints, and the north-south lines are consistent with the shear joints identified by earlier researchers. The trends of the crop lines, tension and shear joints are similar to those of lineaments identified from LiDAR elevation data in the same area (N 20° W, and N 70° W and N 70° E) and coincide with the occurrence of karst features throughout eastern Jo Daviess County.The pattern observed in the crop lines closely mimics the fracture/crevice patterns of the bedrock surface. The widths and extent of the lines may be used as a surrogate for the karst features present on the bedrock surfaces. Crop lines, coupled with solution-enlarged crevices seen in bedrock exposures, yield a three dimensional view of the bedrock crevice-fracture system, and ultimately could provide a more complete and accurate model of the karst aquifer in the study area and similar karst areas in the Midwestern United States and perhaps in other karst regions of the world.


LiDAR (Light Detection and Ranging) surveys of karst terrains provide high-resolution digital elevation models (DEMs) that are particularly useful for mapping sinkholes. In this study, we used automated processing tools within ArcGIS (v. 10.0) operating on a 1.0 m resolution LiDAR DEM in order to delineate sinkholes and closed depressions in the Boyce 7.5 minute quadrangle located in the northern Shenandoah Valley of Virginia. The results derived from the use of the automated tools were then compared with depressions manually delineated by a geologist. Manual delineation of closed depressions was conducted using a combination of 1.0 m DEM hillshade, slopeshade, aerial imagery, and Topographic Position Index (TPI) rasters. The most effective means of visualizing depressions in the GIS was using an overlay of the partially transparent TPI raster atop the slopeshade raster at 1.0 m resolution. Manually identified depressions were subsequently checked using aerial imagery to screen for false positives, and targeted ground-truthing was undertaken in the field. The automated tools that were utilized include the routines in ArcHydro Tools (v. 2.0) for prescreening, evaluating, and selecting sinks and depressions as well as thresholding, grouping, and assessing depressions from the TPI raster. Results showed that the automated delineation of sinks and depressions within the ArcHydro tools was highly dependent upon pre-conditioning of the DEM to produce “hydrologically correct” surface flow routes. Using stream vectors obtained from the National Hydrologic Dataset alone to condition the flow routing was not sufficient to produce a suitable drainage network, and numerous artificial depressions were generated where roads, railways, or other manmade structures acted as flow barriers in the elevation model. Additional conditioning of the DEM with drainage paths across these barriers was required prior to automated 2delineation of sinks and depressions. In regions where the DEM had been properly conditioned, the tools for automated delineation performed reasonably well as compared to the manually delineated depressions, but generally overestimated the number of depressions thus necessitating manual filtering of the final results. Results from the TPI thresholding analysis were not dependent on DEM pre-conditioning, but the ability to extract meaningful depressions depended on careful assessment of analysis scale and TPI thresholding.


Digital elevation models (DEM) are digital representations of topography that are especially suitable for numerical terrain analysis in earth sciences and engineering. One of the main quantitative uses of DEM is the automatic delineation of flow networks and watersheds in hydrology and geomorphology. In these applications (using both low­resolution and precision DEM) depressions hinder the inference of pathways and a lot of work has been done in designing algorithms that remove them so as to generate depression­free digital elevation models with no interruptions to flow. There are, however, geomorphological environments, such as karst terrains, in which depressions are singular elements, on scales ranging from centimetres to kilo­metres, which are of intrinsic interest. The detection of these depressions is of significant interest in geomorphologic map­ping because the development of large depressions is normal in karst terrains: potholes, blind valleys, dolines, uvalas and poljes. The smallest depressions that can be detected depend on the spatial resolution (pixel size) of the DEM. For example, depressions from centimetres to a few metres, such as some types of karren, cannot be detected if the raster digital eleva­tion model has a spatial resolution greater than, say, 5 m (i.e., square 5m pixel). In this work we describe a method for the au­tomatic detection and delineation of terrain depressions. First, we apply a very efficient algorithm to remove pits from the DEM. The terrain depressions are then obtained by subtract­ing the depression­free DEM from the original DEM. The final product is a digital map of depressions that facilitates the cal culation of morphometric features such as the geometry of the depressions, the mean depth of the depressions, the density of depressions across the study area and the relationship between depressions and other variables such as altitude. The method is illustrated by applying it to data from the Sierra de las Nieves karst massif in the province of Málaga in Southern Spain. This is a carbonate aquifer that is drained by three main springs and in which the depressions play an important role in the recharge of the aquifer. A doline density map, produced from a map of 324 detected dolines/uvalas, identifies three main recharge areas of the three springs. Other morphometric results related to the size and direction of the dolines are also presented. Finally the dolines can be incorporated into a geomorphology map.

Do carbonate karst terrains affect the global carbon cycle?, 2013, Martin Jonathan B. , Brown Amy, Ezell John

Carbonate minerals comprise the largest reservoir of carbon in the earth’s lithosphere, but they are generally assumed to have no net impact on the global carbon cycle if rapid dissolution and precipitation reactions represent equal sources and sinks of atmospheric carbon. Observations of both terrestrial and marine carbonate systems indicate that carbonate minerals may simultaneously dissolve and precipitate within different portions of individual hydrologic systems. In all cases reported here, the dissolution and precipitation reactions are related to primary production, which fixes atmospheric CO2 as organic carbon, and the subsequent remineralization in watersheds of the organic carbon to dissolved CO2. Deposition of carbonate minerals in the ocean represents a flux of CO2 to the atmosphere. The dissolution of oceanic carbonate minerals can act either as a sink for atmospheric CO2 if dissolved by carbonic acid, or as a source of CO2 if dissolved through sulfide oxidation at the freshwater-saltwater boundary. Since dissolution and precipitation of carbonate minerals depend on ecological processes, changes in these processes due to shifts in rainfall patterns, earth surface temperatures, and sea level should also alter the potential magnitudes of sources and sinks for atmospheric CO2 from carbonate terrains, providing feedbacks to the global carbon cycle that differ from modern feedbacks.

The process of ghost-rock karstification and its role in the formation of caves, 2014, Dubois C. , Quinif Y. , Baele J. M. , Barriquand L. , Bini A. , Bruxelles L. , Dandurand G. , Havron C. , Kaufmann O. , Lans B. , Maire R. , Martin J. , Rodet J. , Rowberry M. D. , Tognini P. , Vergari A. ,

This paper presents an extensive review of the process of ghost-rock karstification and highlights its role in the formation of cave systems. The process integrates chemical weathering and mechanical erosion and extends a number of existing theories pertaining to continental landscape development. It is a two stage process that differs in many respects from the traditional single-stage process of karstification by total removal. The first stage is characterised by chemical dissolution and removal of the soluble species. It requires low hydrodynamic energy and creates a ghost-rock feature filled with residual alterite. The second stage is characterised by mechanical erosion of the undissolved particles. It requires high hydrodynamic energy and it is only then that open galleries are created. The transition from the first stage to the second is driven by the amount of energy within the thermodynamic system. The process is illustrated by detailed field observations and the results of the laboratory analyses of samples taken from the karstotype area around Soignies in southern Belgium. Thereafter, a series of case studies provide a synthesis of field observations and laboratory analyses from across western Europe. These studies come from geologically distinct parts of Belgium, France, Italy, and United Kingdom. The process of ghost-rock karstification challenges a number of axioms associated the process of karstification by total removal. On the basis of the evidence presented it is argued that it is no longer acceptable to use karst morphologies as a basis with which to infer specific karstogenetic processes and it is no longer necessary for a karst system to relate to base level as ghost-rock karstification proceeds along transmissive pathways in the rock. There is also some evidence to suggest that ghost-rock karstification may be superseded by karstification by total removal, and vice versa, according to the amount of energy within the thermodynamic system. The proposed chemical weathering and subsequent mechanical erosion of limestone suggests that the development of karst terrain is related far more closely to the geomorphological development of aluminosilicate and siliceous terrains than is generally supposed. It is now necessary to reconsider the origin of many karst systems in light of the outlined process of ghost-rock karstification.

Sagging and collapse sinkholes over hypogenic hydrothermal karst in а carbonate terrain, 2014, Frumkin A. , Zaidner Y. , Na'aman I. , Tsatskin A. , Porat N. , Vulfson L.

We show that clusters of karst sinkholes can occur on carbonate hypogene karst terrains. Unlike common doline karst of dissolution origin, the studied sinkholes form mainly by sagging and collapse. Thermal survey, OSL dating and morphologic analysis during quarrying and excavations are applied to study the sinkholes at the Ayyalon karst, Israel. The thermal survey shows the spatial pattern of rising warm water plumes, whose temperature is > 2 °C warmer than the surrounding aquifer water. These plumes dissolve the limestone, creating large voids and maze caves. Mass wasting forms surface sinkholes mainly by sagging and collapse. Both types of deformation often occur within the same depression. Lack of hydrologic connection between the surface and underground voids constrain drainage and promote rapid accumulation of colluvium, dust and pedogenic clays. These have filled the sinkholes up to their rim before the late Holocene. OSL dating constrains the rate of sediment accumulation within the sinkholes. The average filling rate (thickness divided by elapsed time) is ~ 47 mm ka− 1 for the last 53 ± 4 ka in Sinkhole 1, while in Sinkhole 2 (“Nesher Ramla karst depression”), the rate is ~ 61 mm ka− 1 from ~ 200 to 78 ka, and ~ 173 mm ka− 1 since ~ 78 ka. Between ~ 170 and 78 ka, Sinkhole 2 was intensively used by Middle Paleolithic hominins. The studied sinkholes may be considered as a type locality for hypogene sinkhole terrain on carbonate rocks.

Sinkholes, pit craters, and small calderas: Analog models of depletion-induced collapse analyzed by computed X-ray microtomography, 2014,

Volumetric depletion of a subsurface body commonly results in the collapse of overburden and the formation of enclosed topographic depressions. Such depressions are termed sinkholes in karst terrains and pit craters or collapse calderas in volcanic terrains. This paper reports the first use of computed X-ray microtomography (?CT) to image analog models of small-scale (~< 2 km diameter), high-cohesion, overburden collapse induced by depletion of a near-cylindrical (“stock-like”) body. Time-lapse radiography enabled quantitative monitoring of the evolution of collapse structure, velocity, and volume. Moreover, ?CT scanning enabled non-destructive visualization of the final collapse volumes and fault geometries in three dimensions. The results illustrate two end-member scenarios: (1) near-continuous collapse into the depleting body; and (2) near-instantaneous collapse into a subsurface cavity formed above the depleting body. Even within near-continuously collapsing columns, subsidence rates vary spatially and temporally, with incremental accelerations. The highest subsidence rates occur before and immediately after a surface depression is formed. In both scenarios, the collapsing overburden column undergoes a marked volumetric expansion, such that the volume of subsurface depletion substantially exceeds that of the resulting topographic depression. In the karst context, this effect is termed “bulking”, and our results indicate that it may occur not only at the onset of collapse but also during progressive subsidence. In the volcanic context, bulking of magma reservoir overburden rock may at least partially explain why the volume of magma erupted commonly exceeds that of the surface depression.

A review on natural and human-induced hazards and impacts in karst, 2014, Gutiérrez Francisco, Parise Mario, De Waele Jo, Jourde Hervé

Karst environments are characterized by distinctive landforms related to dissolution and a dominant subsurface drainage. The direct connection between the surface and the underlying high permeability aquifers makes karst aquifers extremely vulnerable to pollution. A high percentage of the world population depends on these water resources. Moreover, karst terrains, frequently underlain by cavernous carbonate and/or evaporite rocks, may be affected by severe ground instability problems. Impacts and hazards associatedwith karst are rapidly increasing as development expands upon these areas without proper planning taking into account the peculiarities of these environments. This has led to an escalation of karst-related environmental and engineering problems such as sinkholes, floods involving highly transmissive aquifers, and landslides developed on rocks weakened by karstification. The environmental fragility of karst settings, togetherwith their endemic hazardous processes, have received an increasing attention from the scientific community in the last decades. Concurrently, the interest of planners and decision-makers on a safe and sustainable management of karst lands is also growing. This work reviews the main natural and human-induced hazards characteristic of karst environments, with specific focus on sinkholes, floods and slope movements, and summarizes the main outcomes reached by karst scientists regarding the assessment of environmental impacts and their mitigation.

Evaporite karst in three interior layered deposits in Iani Chaos, Mars, 2015,

This paper describe the karst landforms observed in three interior layered deposits located in Iani Chaos, a large depression located in the equatorial region of Mars, characterised by spectral signatures of monohydrated and polyhydrated sulfate such as kieserite and gypsum. A morphological and morphometric survey of the ILD surface morphologies through an integrated analysis of the available Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) highlighted the presence of depressions of various shapes and sizes. These Martian landforms interpreted as doline of polygenetic origin resemble similarly karst landforms that can be observed both in different karst terrains on Earth and in other regions of Mars. The karst landforms observed suggest a climatic change and the presence of liquid water, probably due to ice melting, in the late Amazonian age.

Turkish karst aquifers, 2015, Gunay G. , Guner N. , Tork K.

One third of Turkey’s surface is underlain by carbonate rocks that have been subdivided into four karst regions. The carbonate rock units are about 200 km wide along the Taurus Mountains that attain elevations of 2500 m. Karst features of western Turkey bordering the Aegean and Mediterranean seas demonstrate the tectonic, lithological and climatic controls on the occurrence, movement, and chemical characteristics of groundwater. In Turkey all karstic feature, such as lapies, caves, sinkholes, uvalas, poljes, ground river valleys developed in all karstic areas. Karstification is related not only to the thickness and to purity of limestone, climate and height but also to tectonic movements. Water resources of karst terrains of Turkey are relatively rich and as such are very important for the economic development of the country. High mountain chains, very often associated with the karst terrains, are responsible for some important and beneficial characteristics of these water resources. Four karst regions are: (1) Taurus karst region, (2) southeast Anatolia karst region, (3) central Anatolia karst region, and (4) northwest Anatolia and Thrace karst regions.

The current status of mapping karst areas and availability of public sinkhole-risk resources in karst terrains of the United States, 2015,

Subsidence from sinkhole collapse is a common occurrence in areas underlain by water-soluble rocks such as carbonate and evaporite rocks, typical of karst terrain. Almost all 50 States within the United States (excluding Delaware and Rhode Island) have karst areas, with sinkhole damage highest in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. A conservative estimate of losses to all types of ground subsidence was $125 million per year in 1997. This estimate may now be low, as review of cost reports from the last 15 years indicates that the cost of karst collapses in the United States averages more than $300 million per year. Knowing when a catastrophic event will occur is not possible; however, understanding where such occurrences are likely is possible. The US Geological Survey has developed and main-tains national-scale maps of karst areas and areas prone to sinkhole formation. Several States provide additional resources for their citizens; Alabama, Colorado, Florida, Indiana, Iowa, Kentucky, Minnesota, Missouri, Ohio, and Pennsylvania maintain databases of sinkholes or karst features, with Florida, Kentucky, Missouri, and Ohio providing sinkhole reporting mechanisms for the public.

Results 121 to 133 of 133
You probably didn't submit anything to search for