Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That olivenite is a cave mineral - cu2(aso4)(oh) [11].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Acta carsologica, 2011, Vol 40, Issue 2, p. 381-390
Development of a Specific Quantitative Real-Time PCR Assay to Monitor Chlorella DNA: A Case Study from Mammoth Cave National Park, Kentucky, USA
Abstract:

Estimates of phytoplankton abundance are important parameters
watched by stewards of water quality and freshwater ecology in rivers, streams, and reservoirs. A targeted phytoplankton assay
for Chlorella DNA was developed to estimate the abundance of the predominant species of green algae in surface waters of Mammoth Cave National Park (MACA) in Kentucky, USA. The phytoplankton community in the Green River in MACA has been shown to consist of 95% Chlorella sp. (Wullschlegger et al., 2003). Chlorella 18S rRNA gene sequences were amplified and quantified using Quantitative Real-Time PCR (qPCR) with primers
specific for the family Chlorellaceae in the class Trebouxiophyceae,
order Chlorellales. Concentrations of Chlorella DNA in river water samples were measured by comparison to a standard curve generated by DNA extracted from a live laboratory culture of C. vulgaris. DNA isolated from other sources including bacteria,
amoebae, fungi, decapods, insects, cave sediment, and a different
green alga, Chlamydomonas, produced no PCR products and thus did not interfere with the detection and quantification of Chlorella DNA. The assay proved quantitative over more than four orders of magnitude with a method detection limit (MDL) of approximately 2.3 x104 cells/L. Presence or absence of Chlorella
DNA could be demonstrated at concentrations ten to 100 times lower than the calculated MDL. Chlorella was detected in lampenflora samples from three tourist trails, and Chlorella was absent from sediment samples off tourist trails that were known to contain high concentrations of bacterial DNA. Demonstration of the utility of the technique was illustrated by a case study in Mammoth Cave National Park to determine Chlorella concentrations
at various sampling sites of karst surface streams where invasive zebra mussels are a threat to native species.