KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Chemical Geology, 2000, Vol 169, Issue 0, p. 461-470
Controls on bacterial sulphate reduction in a dual porosity aquifer system: the Lincolnshire Limestone aquifer, England
Bottrell Sh, Moncaster Sj, Tellam Jh, Lloyd Jw, Fisher Qj, Newton Rj,
Abstract:
Chemical and sulphur isotopic analyses are presented of fissure-waters and pore-waters in the deep confined zone of a dual porosity carbonate aquifer. Some of the fissure-waters show good evidence for bacterial sulphate reduction, with low concentrations of sulphide present which is strongly to moderately depleted in 34S relative to sulphate. The sulphur geochemistry is best interpreted as mixing between: (i) a reduced water with sulphide ~60[per mille sign] depleted in 34S relative to sulphate; and (ii) a sulphate-rich water from up-dip in the aquifer. In addition, sulphide oxidation occurs where sufficiently oxidizing water is drawn in by abstractions. The large isotope fractionation factor associated with the sulphidic waters is probably the result of redox cycling of sulphur with little net reduction, rather than a true kinetic fractionation factor. By contrast, pore-waters in the 'sulphate reducing zone' show little or no evidence for the effects of sulphate reduction, despite the fact that the pore-waters represent a significant reservoir of sulphate for reduction. Some pore-waters have been modified recognizably by diffusional exchange with the fissure-waters, but the aquifer matrix has not been colonized by sulphate reducing bacteria, probably because porethroats in the limestone are too small for bacteria to pass. Physical exclusion of bacteria from the aquifer matrix and limited diffusional exchange are likely to exert fundamental controls on bacterial redox processes in dual porosity aquifer systems and other systems with low permeability due to small pore interconnections
Chemical and sulphur isotopic analyses are presented of fissure-waters and pore-waters in the deep confined zone of a dual porosity carbonate aquifer. Some of the fissure-waters show good evidence for bacterial sulphate reduction, with low concentrations of sulphide present which is strongly to moderately depleted in 34S relative to sulphate. The sulphur geochemistry is best interpreted as mixing between: (i) a reduced water with sulphide ~60[per mille sign] depleted in 34S relative to sulphate; and (ii) a sulphate-rich water from up-dip in the aquifer. In addition, sulphide oxidation occurs where sufficiently oxidizing water is drawn in by abstractions. The large isotope fractionation factor associated with the sulphidic waters is probably the result of redox cycling of sulphur with little net reduction, rather than a true kinetic fractionation factor. By contrast, pore-waters in the 'sulphate reducing zone' show little or no evidence for the effects of sulphate reduction, despite the fact that the pore-waters represent a significant reservoir of sulphate for reduction. Some pore-waters have been modified recognizably by diffusional exchange with the fissure-waters, but the aquifer matrix has not been colonized by sulphate reducing bacteria, probably because porethroats in the limestone are too small for bacteria to pass. Physical exclusion of bacteria from the aquifer matrix and limited diffusional exchange are likely to exert fundamental controls on bacterial redox processes in dual porosity aquifer systems and other systems with low permeability due to small pore interconnections
Keywords: aquifer, bacteria, carbonate, carbonate aquifer, carbonate-aquifer, diffusional exchange, dual porosity, dual porosity systems, dual-porosity, england, exchange, fractionation, geochemistry, groundwaters, isotope, isotope fractionation, limestone, limestone aquifer, matrix, mixing, oxidation, permeability, pore water, porethroat size, porosity, reduction, reservoir, sulphate reduction, sulphide oxidation, sulphur, system, systems, water, waters, zone,